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PRODUCT FORMULAS FOR STEENROD OPERATIONS
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A star operation is defined and studied Tor the Steenrod algebra. Numerous product formulas of Steenrod
operations are presented.

1991 Mathematics subject classification: Primary 55S1O, 16W30, 13A5O, 20C20.

1. Introduction

Milnor's composition law [7] (Section 2) has long been the most important theorem
for the Steenrod algebra. It is often used to calculate the product of two specific Milnor
basic operations. But by manipulating matrices in this calculation one can hardly obtain
any formula of general pattern. It is our purpose in this paper that we incorporate
Milnor's law into a single product formula of global operations using a star operation
among sequences of scalar parameters, which is defined from the coproduct formula of
the dual Steenrod algebra (Section 3). Properties of this star operation along with their
implications on the Steenrod algebra constitute the main part of this paper. A formula
which calculates the conjugate of the Steenrod algebra is an immediate application
(Section 4). Weighted symmetric polynomials are defined (Section 5), whose combi-
natoric properties determine the algebra structure of Steenrod operations. The simplest
example of these properties implies the Bullet-Macdonald symmetry for the Adem
relations (Section S). The most general example is a relation between the Dickson and
Mui invariants from the modular representation theory and iterated products in the
Steenrod algebra (Section 8). We also have more product formulas (Section 6) which are
used in a study of nilpotence in the Steenrod algebra (Section 7).

This paper is a revision and extension of the results on the Steenrod algebra first
presented in my dissertation. I like to thank sincerely my Ph.D. advisor Professor
Richard M. Kane for every piece of advice and guidance I received during my Ph.D.
candidacy. I would like to thank Professors Kee-Yuen Lam and Denis K. Sjerve for
their supervision and precious help in my post-doctoral years at the University of
British Columbia. Finally I would like to thank the Izaak Walton Killam Committee of
Canada for awarding me a fellowship under which this paper is written and published.

2. Milnor Composition Law

In this section we set up our background. Let <? ̂  1 be a fixed integer, p a prime. Let
q = cf, F4 a field of q elements. Binomial and multinomial coefficients are denoted by
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208 ZAIQING LI

It is true that for non-negative integers x=Y,izoxiP' a n d y — Y^noyiP' m P-adic
expansion,

= n • ( m ° d p)' o> y \ = n c .̂. ̂  ( m ° d p>-

By an exponent sequence we mean a sequence of non-negative integers R =
(r1,r2,r3,...) such that r ,#0 for only finite number of i's. An exponent sequence can be
multiplied by a non-negative integer and two exponent sequences can be added
component-wise. The following is standard:

A, = (0,..., 0,1,0,...), where 1 is the Ah component,

0=(0,0,0,...).

By a sequence of scalar parameters we mean a sequence ^ = (^i,^2,£,3,...) which is
independent of the Hopf algebra (the Steenrod algebra) that is in discussion. We write
£,R for the monomial £\'£r

2£
r
3

3... and assume £0=l for convenience. When we expand an
expression A in terms of monomials B we denote by

the coefficient of B. For example, if m = fc, + k2 + — +kn,

is the Steenrod algebra of mod p stable cohomology operations. It is the graded
associative algebra over Fp generated by the Bockstein operation S and the (reduced)
Steenrod operations ^ " (n^l) , when p is odd, or by the Steenrod squares Sq" (n^
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PRODUCT FORMULAS FOR STEENROD OPERATIONS 209

when p = 2, modulo the Adem relations. Milnor showed that sf(p) has a linear basis
containing 9R, called Milnor basic elements (operations), where R are exponent
sequences, such that ^=0" if R=(r,0,0,...), and that it is a Hopf algebra over Fp, the
coalgebra structure being the Cartan formula. As conventions, 0"x r" is 1 if n = 0 and
8PR is the zero operation if R is not an exponent sequence. In the case p = 2 we assume
^R is the operation Sq*. Moreover

Notation 2.1.
| , l 2 tn

—

(2)

To state Milnor's results we define Milnor notations R(X)=(r,,r2, . . .) , S(X) =
(sl,s2,--), T(X)=(tl,t2,...) and b(X) for a matrix of non-negative integers, almost all
zero,

0 X Q I XO,I ••• \

Xl 0 ^1 1 "^1,2 *'•

^ 2 , 0 ^ 2 . 1 -^2,2 • ' •

\ i i i ••• /
where

*'

Theorem 2.2 ([7]). T/ie dual Steenrod Algebra s?+(p) is a Hopf algebra over Fp. As an
algebra, it is Grassmannian:

/D\ = J£O'i>3'2.---)®IFpl>,,x2,X3,...] if Pi*2

*KP) lF2[x1,x2,x3,.. .] ifp=2,

where the generators have degree

coalgebra map ip# is given by

'*(>'*)= Z ^
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Theorem 23 (Milnor Composition Law [7]). The Steenrod algebra s/(p) is the Hopf
algebra dual to s#+{p). It has a free ¥p-basis

| a,=0,1, R: exponent sequences} if p # 2,
{Sq* | R: exponent sequences} if p = 2.

The degrees are deg(J,)=l, deg(^R) = ||/?|| and deg(Sq*) = D(R). The coalgebra map q>*
is given by the Cartan formula

Ri + Ri = R

The algebra map if/* is determined by

(1)

(2)

(3)

3. Star operation

We are going to define a star operation for the Steenrod algebra s/(p). We begin with
a Hopf algebra (#*,<?>,,„</'„) of finite type over a (graded-)commutative ring F in the
sense of Milnor and Moore [8]. We assume that H^ is evenly-graded if the
characteristic of F is not 2, for this eliminates any sign change when switching order of
factors in a product. Suppose that the algebra structure is polynomial H^ =
F[x,,x2 x ]. Hence the dual Hopf algebra (H*,i//*,(p*) has a free F-basis {3>R\R
exponent sequences}:

ifR = S
otherwise,

where < | > denotes the Kronecker pairing. By duality

The coalgebra structure <p* satisfies the Cartan formula

Definition 3.1. Suppose that ^=(^ 1 ,^ 2 » - ) a °d n=(ri1,n2,...) are sequences of
scalar parameters, and that
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E
R.S

Then the star operation is £*>/=((<!;*f)i,(£*f/)2,...) where

fi,S

Theorem 3.2. For any sequences of scalar parameters £, and n,

R.S T

This means that the product @R2>S is a sum of 2)T with coefficients

Theorem 3.2 will be applied to the Steenrod algebra with a little modification. We then
obtain many new and old formulas which constitute the main part of this paper. In [6]
a star operation for the Brown-Peterson algebra BP*(BP) is defined. In that case the
product formula (3.2) implies the Quillen theorem. We now prove the theorem by an
argument of duality.

Lemma 33. Let 9(§=£R9R£,R, and 9>{r\)=£s®
sns. Then for f,geHm,

Proof. Since H* is a Hopf algebra q>* is multiplicative. By duality and the Cartan
formula,

R.S
9*9*?!? fg

R.S

R.S
<P*(®R)<p*(®sKRrfl f®g\

I

= / E
\

f \ •/ E
/ \il2.S2

g\
/
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R.S I

Proof of Theorem 3.2. We check the two sides of the formula in the theorem have
the same effect on H^ with respect to the Kronecker pairing. For exponent sequence T

R.S

X7 = f l <
QO

QO /

-.n(
-fi(

' S R S

\R,S

1

\R,S

£ ( ^ ® D5

R.S

7

V (*)
ZJ flf.

by Lemma 3.3

xY
7

We now turn to the case of the Steenrod algebra
•(p) which is dual to

D

Consider the Hopf algebra

%.

By Theorems 2.2 and 2.3
structure i]/m is given by

is polynomial:

*•(**)= Z

= Fp[x,,x2,x3,.. .]. The coalgebra

The dual of x* gives the Milnor basic operation 0>R. Therefore a star operation is
defined for @+(p) hence for the Steenrod algebra st(p). For sequences of scalar
parameters ^ and t\, we define ^ *rj by

*= Z tfij, k^l.
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Remark 3.4. The polynomials (£*»/)* are in the first column of the product of
matrices mod p:

/ I 0 0 0 . . . \

, 1 0 0 . . .

> « 1 0 . . .

\ : : = ; - . /

/ I 0 0 0 . . . \

! 1 0 0 ...

, 17? 1 0 ...

\
It is true that for any £, n and C, there is an <f such that

Theorem 3.5 (Milnor Product Formula).

(2)

(3)

Proof. (1) is a direct application of Theorem 3.2 when applied to the Hopf algebra
@l*(p). (2) and (3) are reformulations of Theorem 2.3(2) and (3) using global operations.

•
Global operations 2P(g) are parallel with those in Atiyah and Hirzebruch [1] and

Monks [9]. We use the star operation in the proof of a theorem [9] which is credited
by Monks as having originally been proved by Atiyah and Hirzebuch.

Theorem 3.6 ([1]). Let S(e,,e2,...) = Er,.r2....Sq"ri>'2r2-", e,=0,1, called generalized
total Steenrod squares. The set of operations S(e1,e2>---) ' s a SrouP under the multiplica-
tion of Steenrod operations. Moreover it is isomorphic to the group of units of the algebras
F2[[x]] of formal power series by the map

Proof. The global operation £(£,,62,...) is equal to ^(e) where e = (£1)e2,. . .), for
£ r 2 " " e V e 2

I . . . and, ej '=l if £,/•, = ;•,•; otherwise 0. Take scalar sequences
, . . . ) and / I = ( / I 1 , / J 2 ) fr°m ^2- By Theorem 3.2

i+j=k i+j=k

This implies that the multiplication of generalized total Steenrod squares corresponds to
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the multiplication of formal power series from F2[[x]]. It is obvious that the map
defined in the theorem is injective and surjective. The theorem follows. •

4. Conjugate

Our first application of Theorem 3.5(1) is to calculate x (or the anti-automorphism in
[7]) of the Steenrod algebra st{p) which is defined inductively by

Milnor attempted to calculate / non-inductively ([7, Theorem 5]) but finished up with a
very complicated formula which is almost impossible to use in practice. Our formula is
much simpler.

Theorem 4.1. For any exponent sequence R

where X runs over all matrices of non-negative integers, almost all zero, of the form

/ 0 0 0 . . . I

For example,

*2,0

I 3PR, ([7])
D{R)=r

, if all rt<p,

Proof. Given £,, choose n such that <!;*f/=0, i.e. — nn =
^ l . By Theorem 3.5(1)
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Multiplying with JlRx(&RKR from the left,

215

£ , hence

We claim that for S = (s1,...,5n)0,...), sn#0,

T{X

where

/ 0 0 0 ..
X l , 0 X l , l X1.2 ••
X 2 ,0 X2.1 X2,2

Xn-l,0 X n - l . l 0

\xn.o 0 0 ..

X =

. 0 0 \

• 0 0

. 0 0/

. 0 0/

with xitj non-negative integers. This can be proved by a technique of successive
expansion. We ignore the minus sign of r\n (which can be easily recovered). For
S=(s1,...,sn,0,...), sn#0,

JCM.O+ * * ' + * 1 , n - I =Sn

Let S'=(st

where

j n . , ,0 , . . . ) . Now by induction on n

/ 0 0 0 ... 0 0 \

•• Xl,n-2

2,2 0 0

x»-n-2,0, n.2i 0 ... 0 0
\x.-i .o 0 0 ... 0 0

with XJJ non-negative integers. We find that Y is the upper-left («x n)-corner in the
matrix X, except the integers x, ; , i + j = n. Therefore
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»fs=(»7ii1...»r?-i1)-tf1

Z [x..o,*.-i.i.-.*i..-i]-«f"xi--i-^"fi-ie-ov
X«.O + -"+*l.n-l=*ii

— Li L * n , O > X | i - l , l » - - - > * l , i i - l J <=1 • • • S n - 1 Sn <•>

This proves the claim. We are done by reading off from it the coefficient

Formulas involving the conjugate x c a n a l s o °e given in the form of global
operations. The following is such an example.

Theorem 4.2. For scalar parameters tx and /?,

(1) Zr.m(-1)"

(2) Z-n.r(-l)"

In other words,

D(T) =

Proof. Take £ = (a,0,0,...), i, = (-/?,0,0,...) and C=(0,0'+ 1 ,0 '2 + p + i , . . . ) . Then
•C=0 and ^*C = (a + )3,(a + ^)p/3,(a + / ? ) p y + 1 , - ) -By Theorem 3.5

That is,

r.S T U.S

The latter identity implies

I ^scs=z xo^V=Z (-
S I / ra

which is substituted into the left hand side of the former identity. We get the first
formula in the theorem. The second one can be treated similarly.
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5. Iterated products

Definition 5.1. Suppose a 1 ) a 2 , . . . , a n are scalar parameters. The q-weighted symmetric
polynomials for the a, are

=af a2a3 +af a2a4 + • • • • +af_2a?_ xan

Notice that if the elements a1 >a2,. . . ,a( 1 are algebraically independent over Fp, then so
are the elements al,a2,...,an. In fact a,- is algebraic over Fp(a, + 1 , . . . ,an,(j1,(72,. . . ,o-n) for
n ^ i ^ 1. For example an satisfies the equation

Theorem 5.2. Let a 1 , a 2 , . . . , a I I and o1,o2,---,Gn be as in Definition 5.1. Then

Proof. Since the star operation is associative it follows from the iteration of
Theorem 3.5 that for sequences of scalar parameters £(l[), k = l,2,...,n,

In this case £(0=(0,...,0,otf,0,...) the sequence ^ ( 1 ) * i j ( 2 ) * . . . * ^ ( n ) consists of the

elements appearing in the first column of a product of n matrices, e.g. in the case i = 1
(by Remark 3.5)

A 0 0 0 ...\
a , 1 0 0 ...
0 <x{ 1 0 ...
0 0 af 1 ...

Y

/ l 0 0 0 .. . \
a2 1 0 0 ...
0 a§ 1 0 ...
0 0 a§2 1 ...

V -./

/ l 0 0 0 .. . \

a. 1 0 0
0 aj 1 0
0 0 aj?2 1

\=
They are the elements of (<r1)ff2,...,an,0,...). The theorem follows. •

We see that iterated products of Steenrod operations are completely determined by
the combinatoric behaviors of weighted symmetric polynomials. Of numerous conse-
quences the Peterson formula and the Bullet-Macdonald symmetry for the Adem
relations are immediate from Theorem 5.2.
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Theorem 5.3 ([12]). For m,n^\

ri+r2+"'+rn=m ti(q — 1 ) + • • • + tn{qn — 1) = m(q — 1

In particular when n is a power of q,

r i + r 2 + r ' . + l . n = m ' ' ' {0 otherwise.

Proof. The formula 5.2 splits by total degree from the both sides. The identity in
degree 2m(q — 1) (or in degree m(q— 1) if p = 2) is the formula to be proven. •

Theorem 5.4. / / a, = u(v — u)q ~l and a.2 = v", then

(1) &e(a.l)-&Aa2)> and

are expressions symmetric with respect to u and v.

Proof. (1). A special case of Theorem 3.5(1) is

11.12

where

u — v

a2 = a\ a2 = (u - v)q2
 " V D « .

Since both ax and <r2
 a r e symmetric with respect t o u and v, (1) follows.

(2). By Theorem 2.3(2), ^ J J I B / - . 2 m , ^ = . 2 ( I I 1 + 1 ) ^ ~ * m . In terms of global operations,
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Hence (2) is equal to

which is symmetric by (1). •

Bullet and Macdonald proved the symmetry above in the case <f=l and m=0 by
using a Cartan-Serre theorem. They also showed a technique of residue computation
that their symmetry implies the Adem relations. Recall that the Adem relations [13] are

j = 0

«-« J

a-pj-1 J

They are a set of relations which defines the Steenrod algebra algebraically. The residue
technique is applied to Theorem 5.4. Hence the Adem relations for the subalgebra of the
Steenrod algebra stf(p) generated by the operations ^ are

I (

Later in Section 7 we will find that there are Adem relations for other algebras as
well. In Section 8 we will fully extend the symmetry in Theorem 5.4 to a relation
between the Dickson invariants and Mui invariants of modular representation theory.

6. Product formulas

Observation 6.1. Let £,, rj and A be sequences of scalar parameters. Define a formal
power series over Fp by

Then Theorem 3.5(1) is equivalent to the fact that
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For,

This observation implies:

Rule of thumb. When we have a formula involving coefficients in the expansion of F
in terms of £ and r\, we may convert it into a formula for Steenrod operations by
replacing each monomial %Rt]s with ^R^s and kT with ̂ T .

As a simple example let us consider the mod 2 case where <J = (a, 0,0,...),
>7 = (/?,0,0,...) and k = (kl,A2,...). In other words,

1 1 ^ ? , over F2,

where /,,S(A!,^2) are polynomials in Ax and A2 over F2. It is true that

Comparing the coefficients of monomials in a and /? from the both sides of the formula
l , ) ( l+a 2 /M 2 )-F 2 , we find that, for any integers u and v

(1) J2u+ 1,2D+ l(^1.^2) = ^1^2 fu- 1

(2) /2u+l,2i)(^l>^2) = ^iyu,»(^l>^

(4) /2U.2^,,A2) = /U,K(

By our rule of thumb, we obtain, for example, Sq2"+ 1Sq2"+ 1 from f2u+i,2v
/l1/l2/>(Squ~1Sq';) from k1X2fu_Uv{k\,X\), where AXA2D is the composite of the
F2-maps Ay, A2 and D from s/(2) to itself such that

+i

Ai:Sq'l-l2t-*Sq "*1'12
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This proves:

Theorem 6.2. For any integers u and v

(1) Sq2l i+1Sq2"+1=/l1/42D(Sq1'-1Sq")

(2) Sq2u+1Sq2" = A, D(SquSq0)

(3) Sq2uSq2B+1 =/41D(SqoSq") + /l2D(Sq1'-1Sq1'),

(4) Sq2uSq2u =D(SquSq") + >l1/l2D(Squ-1SqI)-1)- •

We also define £:Sq"-'2i->Sq4" + 3-412-1. It turns out that:

Theorem 6.3. For any integers u and v,

Sq4uSq4c = D(Sq2uSq2") + £(SquSq").

In particular for any k^.\,

Therefore, if Lk is the number of Milnor basic operations in (Sq2")2, fc^O, Lk+l =
k + Lk-i. That is, {Lk}k^0 is the Fibonacci sequence {0,1,1,2,3,5,8,13,21,...}.

Proof. By Theorem 6.2(1) and (4), Sq4uSq4" = D(Sq2uSq2") + B(Squ"2Sql>"1), where
= A1A2DAlA2D:Sq"'2i-*Sq4u + 3A'i + 3. The identity

shows that

Replacing )H with Af and multiplying with AjAj1, we get

Since any negative power of kt corresponds to a zero operation in the Steenrod algebra,
the coefficient of a"/?" implies that E(Sq11Sqt7) = B(Sq''-2Sq1'-1). We have proved the
formula. •

The formulas obtained can be well derived from an argument of the Milnor matrix
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calculation 2.3. But the technique of formal power series benefits us when we generalize
Theorem 6.2(1) and (2)

Notation 6.4.

Sq<«+l,O= I Sq2" + 1 2r"+1-2r"*'«1...£"£Vi1

Sq[a]

Theorem 6.5. Suppose that £, and r\ are sequences of scalar parameters and that the
elements ai,a2,...,an are the 2-weighted symmetric polynomials for the parameters
a l J a 2 , . . . , a n . Then

(1)

(2)

(3) Sq[a1]Sq[a2]...Sq[aJ=Sq[n,c7].

Proof. The statement (2) can be obtained from the statement (1) by setting rjm + 1 =0.
Iteration of (2) implies the third statement. We prove the first.

Let W be the F2-space generated by all monomials ft1... ^"n^... ns^ns^+{ such that
either at least one of the numbers r1,...,rn,s1,...,sm is even or sm+1 is odd. By X = Y
we mean X—YeW. Consider the formal power series

n + m + 1

W overFi>

where Q is the star operation of t, and n:

n + m ~in Vm + Sn - 1 *]m + 1
c 2 m + '
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We observe that for every £,- has even powers in £2, for j^i+l, and that every f/, does
not appear in Qn+J for j^.i+1. This implies the congruence

n + m + 1 n + m + 1

n + m+1

* = 3

£n>7l*n+l • • • Sn '

Let F = X«.s/«,SW^V- Then F2 = £«. s /K. s (Wys , where A2=(^,Ai...). Ut

/ = (1 , . . . , 1,0,...) and J = ( l , . . . , 1,0,0,...).

n m

Since F = f[*iT + 1( l -&MF2, modulo W,

This is actually an identity for all terms on both sides are not in W. After cancelling the
factor £i...£nt\i...nm from both sides and replacing £f with <J, and qj with r\}, we
convert the identity into a formula of Steenrod operations. We find that this is
exactly (1). •

7. Nilpotence

We discuss consequences of Theorem 6.5 in the study of nilpotence in the Steenrod
algebra. Recall that an operation 9 in sf(p) has nilpotence n = :Nil(0) if 6"=0 and
^"" '^O. J. Milnor [7] showed that every Steenrod operation of positive degree has a
finite nilpotence. He raised the question of calculating the nilpotence in the Steenrod
algebra. In 1975, S. W. Wilson conjectured that Nil(Sq2") = 2fc + 2. D. Davis announced
[4] the first results that Nil(Sq2<*)^2fc + 2 for fc^l and that Wilson conjecture is true up
to k = 5. K. G. Monks [9, 10] extended his results to the operations 0*2' and conjectured
that Ni l (^ ' ) = 2[s//] + 2. On the other hand, he initialized the study of determining the
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nilpotence of operations Sq2r + 1. He introduced a subalgebra G of the Steenrod algebra
s/(2), containing all operations of the form Sq2r+1. By an elaborated analysis of duality
and matrix he proved a number of theorems. In this section we show that Monks
results can be obtained and extended more systematically from our Theorem 6.5. The
subalgebra (9 has Adem relations, indicating that the study of nilpotence in & has the
same difficulty as in s/(2). In particular we show that to prove the Wilson conjecture is
to prove a relation of operations in Q.

Theorem 7.1 ([10]). For any integers r,,r2,...,rn,

Nil(Sq2ri + 1'2r2 + 1 2r"+1)gmin{fc|rn<2<*-1)n-l}.

Proof. By iterating Theorem 6.5(2) we have

The coefficient of ft'.i.. . £,'{.„.. • ft! i. . . ft% is the operation Sq2ri + 1 2r"+1 on the left
hand side, and is zero on the right hand side if rn<2(k~l)n— 1. Therefore the nilpotence
of the operation Sq2" + 1 2r"+1 [s not bigger than the minimal k such that rn<
2«t-l)n_ |

Theorem 7.2. For any integers rl,r2,...,rn,

Sq2ri + lSq2r2 + 1...Sq2r"+i=0 if and only if Sq"-{2"-1-i)...Sqr"-(2°-1) = 0.

As a consequence, the nilpotence of the operation Sq2r+1 is the minimal positive integer k
such that

S q r -(2«-«-u

Proof. Let oua2,...,an be the 2-weighted symmetric polynomials for a1 ,a2 , . . . ,an .
Suppose R=( r 1 , . . . , r n , 0 , . . . ) ) T = ( t l J . . . , t . ,0 , . . . ) , / = ( l , . . . , l , 0 , . . . ) and J =
(2"'l,...,2°,0,...). From Theorem 6.5(3).

which is zero if and only if

2 1 1 - ( 2 " " 2 - 1 ) . . . S q r " - ( 2 O - 1 ) , by Theorem 5.2.
D
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Theorem 7 J ([10]). Let O be the §2-subspace of s/(2) generated by all Steenrod
squares of the form Sq2" + 1-2'2 + l 2 r"+1, n^O. Then

(1) 0 is a subalgebra of

(2) The Adem relations in (9 are

Sq2fl+1Sq2i+I= £
j=o \_a~2-j~

(3) 77ie map

x-.e -> 0
Ca2ri + l,2r2 + l 2rn+l ^ Q a

4 r i + 3 4rn-1 + 3,4rn+1

is an algebraic monomorphism.

Proof. As we see in Theorem 6.5(2) any product of elements from (9 is a sum in (9.
Hence (9 is a subalgebra of .s/(2). The Bullet-Macdonald technique of residue
computation is applied to the case n = 2 of Theorem 6.5(3). The Adem relations (2)
follow. To prove (3), iterate the process of taking modulo W in the proof of Theorem
6.5. We then have

We see that the product rule for operations Sq4ri + 3 4rn-, + 3,4rn+i j s exactly the same
as the one for operations Sq2ri + 1 •• •2r"-' + 1>2n+1. Hence the A-map is algebraic. It is
also monic. We have completed the proof. •

C is a "small" subalgebra of s/(2) in the sense that it has less dimension in every
degree. But it is equally complicated as <s/(2), for both algebra structures are determined
by the same star operation. Every formula in s#{2) has a corresponding one in &; the
problem of determining nilpotence in 0 is the same difficulty as the problem of
determining nilpotence in s/(2). Taking another point of view, we can define a different
algebra structure in the F2-space sf(2) in which the product of any two basic operations
has fewer non-zero terms.

Theorem 7.4. Let <% be s/(2) as an ¥2-space. Define a product x in <%, called the
reduced product x of Steenrod operations, by

Sqri " - ' • r » + 1 xSq 5 1 5— •• s ' " + 1 =£Sq ' »-—•.«—+»,

where Sq" «»•».-•.*.•„.+1 is a non.zero summand of Sqr ' - • . ' - +i-
Let
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Sq(0»(8 = l, Sq(n>(£)

Then

(J) ^ is an algebra, and for n, WJ^O

Sq( n )(£) Sq(m)(?7) = Sq ( / I + m ) (^ * n).

(2) °U is algebraically isomorphic to 0 under the map Sqr' r"-i,rn+ii

(3) IfA,Be(9,thenAxB = A-

(4) The Adem relations are

"~b-i-\
Sqa+6-j+i xSqJ+1, a,b^O.

P r o o f . (1 ) . L e t R = (ru...,rn,0,...), S = {slt...,sm,O...) a n d T={tu...,tm+m,O,...). B y
Theorem 3.5,

xbq - 2. Lj i t i , s+im
 b1 - Z - L K + V +

That is, Sq(n)(«J) xSq{m)(n) = Sq(n+m)(l;*ri). Since the star operation is associative so is the
reduced product x. Hence °U is an algebra. (2). The map defined maps the formula in
(1) to the formula in Theorem 6.5(2). Since it is both monic and epic, it is isomorphic.
(3). We note from Theorem 6.5(2) that if Sq'1'2 (n+m is a non-zero summand of
Sqrir2 r"SqSlS2 Sm, where all r; and s7- are odd, then tm+m is odd. (4). The Adem
relations can be obtained from those for the algebra & via the map in (2).

Theorem 7.5. For any integers rl,r2,...,rn, and k§: 1

(1) S q 2 r i + 1 S q 2 r 2 + 1 . . . S q 2 r " + 1 = 0 i / a n d o n / y i / S q r ' + 1 x S q r 2 + 1 x ••• x S q r " + 1==0,

(2) S q " S q r 2 . . . S q r " = 0 if and o n l y i f S q n + 2 " " - 1 k S q r 2 + 2 " ' 2 - 1 x ••• x S q r - + 2 ° " 1 = 0 ,

( 3 ) 2 k ' 2 * 2 > + 1 2 2 ' k + 1 2 1 1 k + 1 1

Proof. Let a, be the 2-weighted symmetric polynomials for the a,. Let R =
(ru...,rn,O,...), T=(t1,.. . ,t. ,O,...), / = (1 , . . . , 1,0,...) and J = (2"-\...,2°,0,...). By
Theorem 6.5(3)

[_r+A
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which is zero if and only if

The left hand side is equal to Sqri + I xSqr j + I x ••• xSqr" + 1. Likewise, by Theorem 5.2
in the case i=\,

which is zero if and only if

0 = £ °R+j Sq T + A " = Sqri + 2 " " ' x ••• x S q r " " ' + 2 x Sq r " + 1 , by Theorem 7.4.
r [ _ a J

The formula (3) is implied by the joint of (1) and (2). •

Theorem 7.6 ([10]). For an integer r

Proof. The upper bound is given by Theorem 7.1. The lower bound is a consequence
of Theorem 7.5(1) and the assertion that for any k such that 2k divides r+l,
S q<,+ lW2.fr+W* fr+l)/2*.(,+ lW2* j s a n o n . z e r o t e r m i n

Sqr + 1 . . . S q r + 1 . . S q r + 1 x ••• x S q r + 1

> , hence a n o n zero t e rm in t 2J •
n n

This is checked either by the Milnor matrix calculation 2.3(1) or by using weighted
symmetric polynomials. We omit the details. •

8. Dickson invariants and Mui invariants

Definition 8.1. Given a set of elements xl,x2,...,xn the Dickson invariants
c n ,n - i» c n ,B-2 . -»c n ,o and the Mui invariants (/>„_,, 0n_2, . . . ,</>o

 a n d the modified Mui
invariants <j>n-l,<J>n_2,---,<l>o o v e r the field F , are defined respectively by

I]
Ol O n E F ,

<t>j= F I
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a\,... ,aj,aj+ i eFq,aj + 1 / 0

In the case that {xl,x2,...,xn} is algebraically independent over F,, they are indeed
invariants of linear transformations. Let us make this precise.

Let GLn(q) be the group of all non-singular n x ^-matrices over F,, Tn(q) be the
subgroup of GLn(q) consisting of triangular matrices; Tn(q) be the subgroup of Tn(q)
consisting of matrices in which all diagonal elements are 1. Recall that Tn(q) is a Sylow
subgroup of GLn{q) and Tn{q) is the normalizer of Tn(q). Suppose that xux2,.-.,nn is
F^-linearly independent. There is an action of the groups GLn(q), Tn(q) and Tn(q) on the
symmetric algebra F?[x1,x2, . . . ,xn] generated by the vector space V=¥q(xl,x2,...,xn),
which algebraically extends the linear action on V:

, \ A \ \ where/leGLn(<j)
= (xu...,xn) A I :

x a x + a x H \-anxn.

An element /€F,[x1 ,x2 , . . . ,xn] is said an invariant of the group G (GLn(q), Tn(q) or
tn(q)) if A-f=f for any AeG. Clearly all invariants form a subalgebra
F,[x1 ,x2 , . . . ,xJccF?[x1 ,x2 , . . . ,xn] . For the three groups GLn(q), Ta(q) and Tn(q) they
are actually polynomial algebras of Krull dimension n.

Theorem 8.2.

(1) ([5]) F,[x,,xi

(2) ([11]) F,[x1,x2,...,

(3) F,[x1 )x2, . . . , ,

Proof. The statements (1) and (2) in the case q = p were proved in [14] and [11].
The same proofs apply to the general case. We need to prove (3). It is not hard to see
that $j are invariant under the action of Tn(g). Now suppose that / E F ( ? [ X J , X 2 , . . . , X , I ] is
invariant of Tn(q). It must be an invariant of Tn(q) for Tn(q) <= Tn(g). Therefore it is a
polynomial in the elements </>, by (2). For a fixed i let / = X*a o/*</*?> where each fk is a
polynomial in {</>j}J9Sl. Let /4,(a) be the diagonal matrix which has the diagonal elements
( l , . . . , l , a , l , . . . , l ) . We verify that

I

\a(t>j if j = i

Applying At(a) to / , we have

kZO
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The coefficients on both sides are agreed: fk(a
k—l) = 0 for all k. If fk¥^0 then for any

0#aeF-,a*—1=0; k is a multiple of (q— 1). Hence / is a polynomial in

Lemma S3. The first Dickson invariants are

C] o = -Yl > ^ 2 , 0 = ^ l X2 t*"l •*":

«2 - 1 ^42 - 1
l - _

> C 2 , l —

Proof. A routine calculation shows that J^[<JieFg(a1x1 + Ar) = X* —x^"xX, and

= [I f I!
O2EF, \o i6 f ,O1.O26F,

= ft (a2(^-

- (x| - x\~l x2)" ~1 (Xq - x\~1X)

The coefficients of X and X" in these polynomials are the first Dickson invariants by
definition. •

Lemma 8.4. Define Ao = 1 and for i = 1,2,...,«

A,=

xl x2 ... x,-

x\ x\ ... xl (oucr FA

f" xf"1 ... x?'

77ien (f>i = \i+i/\i for i = 0, l,...,(n— 1). /n particular <l>0 = x1, <^i=x2(x5~1—x^"1).

Proof. The determinant

Xi X2 • • • Xi A.

x\ x\ ... x? X"

4 4 ••• *?'
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is a polynomial in X which has roots alxl + a2x2 + --- + a,x; for any al,a2,...,ais¥q

and has the leading coefficient A,. Therefore it is equal to

•

a » ( E F ,

Take X = xi+l. The determinant above is then Ai + 1 . Hence A,+, =A,$1.

Observation 8.5. In Theorem 5.4, <xl=u(v — u)q~l and <x2 = vq. Let u = x%~1, v =

rl=al+a2 = u(v-u)q~i+vq = -

We see that the Dickson and modified Mui invariants are related by weighted
symmetric polynomials. It comes as no surprise to us that this relationship is
generalized to:

Theorem 8.6. Suppose that CT, are the q-weighted symmetric polynomials for a,, and
that cn i and <£, are the Dickson and modified Mui invariants for the elements x , ,x 2 , . . . ,x n .

then

Proof. The theorem is trivially true in the case M= 1 and is true in the case n = 2 by
the Observation 8.5. We prove the general case by induction on n. Suppose n ^ 2 . Let
yi = xq — xqi~lxi for i = 2,3,...,/i. It is checked that {>'2,}'3,--,yn} is F,,-linear indepen-
dent. Let ipj and dj, j=l,2,...,(n—l), be the modified Mui invariants and the Dickson
invariants for y2,y3,...,yn. Since for any a2,...,ai+1e\Fq,

= El
FI
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Hence tj/i = $i+i for i = 1,2,...,(n— 1). The Dickson invariants for x, and for yt are also
related to each other. To show this let

and

be the defining polynomials of the Dickson invariants for the elements x , , x 2 , . . . , x , and
yi,y3,---,yn respectively. Then

+ (-\)"dox\-lX,

which is satisfied by X = x, for i= l , 2 , . . . , n . Hence F(X) = G(X"-x\~lX). By comparing
the coefficients we obtain

.cn,o =

Also if T 1 , T 2 , . . . , T n _ 1 a re the q-weighted symmetr ic po lynomia ls for a 1 ) a 2 , . . . , a n _ i then

Now by induction T , = < / B _ 2 , T2 = d«_ 3 , . . . ,T B _ 2 =df" \ Tn-l=d£". Since <xn = $l"'' =
x«"-'(,-D w e verify that ( j 1 =c n ( I _ 1 , <x2 = c* B _ 2 , . . . ,CT B _ ,=CJ" 1 " 2 , <Tn = cq

n"o'. The induction
is complete.

Combining Theorem 8.6 and Theorem 5.2 we get

Theorem 8.7.

£^ € C * * * ' r̂ fl ̂  1 t^ ft ̂  2 * * * T^U ^^ t f !»n~l f i t n ^ 2 * * * fi (v *
r i , r 2 rn ri.12 In

Therefore any iterated product of Steenrod operations is expressed by a sum of
Milnor basic operations with coefficients coming from the expansions of monomials of
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Dickson invariants in terms of (modified) Mui invariants. We claim that this is a link of
the algebra structure of the Steenrod algebra to the modular representation theory. We
can expect a close interaction between these two areas of research. We will come to this
topic in a future paper.
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