This paper studies the extent to which probability functions are recursively definable. It proves, in particular, that the (absolute) probability of a statement A is recursively definable from a certain point on, to wit: from the (absolute) probabilities of certain atomic components and conjunctions of atomic components of A on, but to no further extent. And it proves that, generally, the probability of a statement A relative to a statement B is recursively definable from a certain point on, to wit: from the probabilities relative to that very B of certain atomic components and conjunctions of atomic components of A, but again to no further extent. These and other results are extended to the less studied case where A and B are compounded from atomic statements by means of “∀” as well as “~” and “&”. The absolute probability functions considered are those of Kolmogorov and Carnap, and the relative ones are those of Kolmogorov, Carnap, Rényi, and Popper.