We studied oxygen migration in calcia-stabilized cubic zirconia (CSZ) using density functional theory. A Ca atom was substituted for a Zr atom in a 2×2×2 ZrO2 cubic supercell, and an oxygen vacancy was produced to satisfy the charge neutrality condition. We found that the formation energies of an oxygen vacancy, as a function of its location with respect to the Ca atom, were varied. The relative formation energies of the oxygen vacancies located at the first-, second-, third-, and fourth-nearest-neighbors were 0.0, −0.07, 0.19, and 0.19 eV, respectively. Therefore, the oxygen vacancy located at the second-nearest-neighbor site of the Ca atom was the most favorable, the oxygen vacancy located at the first-nearest-neighbor site was the second most favorable, and the oxygen vacancies at the third- and fourth-nearest-neighbor sites were the least favorable. We also calculated the energy barriers for the oxygen vacancy migration between oxygen sites. The energy barriers between the first and the second nearest sites, the second and third nearest sites, and the third and fourth nearest sites were 0.11, 0.46, and 0.23 eV, respectively. Therefore, the oxygen vacancies favored the first- and second-nearest-neighbor oxygen sites when they drifted under an electric field.