Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:25:47.875Z Has data issue: false hasContentIssue false

Fluorite and Pyrochlore Phases in the HfO2 -La2O3 -Gd2O3 Systems: Characterization and Calorimetric Study of Samples Quenched From Melts Formed by Laser Heating and Aerodynamic Levitation

Published online by Cambridge University Press:  20 February 2017

Sergey V. Ushakov
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616
Alexandra Navrotsky
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616
Jean A. Tangeman
Affiliation:
Containerless Research, Inc., Evanston, IL 60202
Get access

Abstract

New experimental results on pyrochlore and defect fluorite phases in HfO2-La2O3 and HfO2-Gd2O3 systems are summarized. Fluorite Hf0.5Gd0.5O1.75 was formed by containerless melting and quenching. Melts with 25-65 mol% La2O3 did not produce any fluorite-type phases, but pyrochlores with cell parameters 10.74 to 10.86 Å. The fluorite phase of Hf0.5La0.5O1.75 can be formed on crystallization of an amorphous precursor from aqueous precipitation. Both La- and Gd- fluorite phases transform to ordered pyrochlore on annealing at 1450 °C. The enthalpies of formation from oxides are −107 ±5 kJ/mol for Hf2La2O7 and −49 ±5 kJ/mol for Hf2Gd2O7 as measured by high-temperature solution calorimetry. Further experiments are needed to elucidate the nature of stabilization of fluorite phase in thin films and powders. Occurrence of disordered phases in thin films, nanoparticles and radiation damaged materials is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padture, N.P., Gell, M., and Jordan, E.H., Science. 296(5566) 280 (2002)Google Scholar
2. Kutty, K.V.G., Rajagopalan, S., and Asuvathraman, R., Thermochimica Acta. 168 205 (1990)Google Scholar
3. Ushakov, S.V., Brown, C.E., and Navrotsky, A., Journal of Materials Research. 19(3) 693 (2004)Google Scholar
4. Lian, J., Zu, X.T., Kutty, K.V.G., Chen, J., Wang, L.M., and Ewing, R.C., Physical Review B. 66(5) 054108/1 (2002)Google Scholar
5. Ushakov, S.V., Navrotsky, A., Tangeman, J.A., and Helean, K.B., J. Am. Ceram. Soc. 90(4) 1171 (2007)Google Scholar
6. Smyth, D.M., The defect chemistry of metal oxides., New York: Oxford University Press,. 2000 Google Scholar
7. Subramanian, M.A. and S.A.W., , Rare earth pyrochlores, in Handbook on the physics and chemistry of rare earths, Gschneider, K.A.J. and E. L., , Editors. 1993, North-Holland: Amsterdam, London, New York, Tokyo. p. 225.Google Scholar
8. Duran, P., Ceramurgia International. 1(1) 10 (1975)Google Scholar
9. Duran, P., Ceramurgia International. 3(4) 137 (1977)Google Scholar
10. Kharton, V.V., Yaremchenko, A.A., Naumovich, E.N., and Marques, F.M.B., J. Solid State Electrochem. 4(5) 243 (2000)Google Scholar
11. Spiridonov, F.M., Stepanov, V.A., Komissarova, L.N., and Spitsyn, V.I., Journal of the Less-Common Metals. 14(4) 435 (1968)Google Scholar
12. Tangeman, J.A., Phillips, B.L., Navrotsky, A., Weber, J.K.R., Hixson, A.D., and Key, T.S., Geophysical Research Letters. 28(13) 2517 (2001)Google Scholar
13. Navrotsky, A., Phys. Chem. Miner. 24(3) 222 (1997)Google Scholar
14. Helean, K.B., Ushakov, S.V., Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M., and Boatner, L.A., J. Solid State Chem. 177(6) 1858 (2004)Google Scholar
15. Ushakov, S.V., Helean, K.B., Navrotsky, A., and Boatner, L.A., Journal of Materials Research. 16(9) 2623 (2001)Google Scholar
16. Ushakov, S.V., Navrotsky, A., Farmer, J.M., and Boatner, L.A., Journal of Materials Research. 19(7) 2165 (2004)Google Scholar
17. Navrotsky, A. and Ushakov, S.V., Thermodynamics of oxide systems relevant to alternative gate dielectrics., in Materials fundamentals of gate dielectrics., Demkov, N.A. A. A., , Editor. 2005, Springer: New York. p. 57.Google Scholar
18. Zhang, Y.H. and Navrotsky, A., J. Non-Cryst. Solids. 341(1–3) 141 (2004)Google Scholar
19. Kanke, Y. and Navrotsky, A., J. Solid State Chem. 141(2) 424 (1998)Google Scholar
20. Paputskii, Y.N., Krzhizhanovskaya, V.A., and Glushkova, V.B., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy. 10(8) 1551 (1974)Google Scholar
21. Lee, T.A. and Navrotsky, A., Journal of Materials Research. 19(6) 1855 (2004)Google Scholar
22. Navrotsky, A. and Ushakov, S.V., Materials Fundamentals of Gate Dielectrics. 57 (2005)Google Scholar
23. Seo, J.F. J.W., Guiller, A., Norga, G., Marchiori, C., Siegwart, H., Locquet, J.-P. Appl. Phys. Lett. 83(25) 5211 (2003)Google Scholar
24. Lian, J., Ewing, R.C., Wang, L.M., and Helean, K.B., Journal of Materials Research. 19(5) 1575 (2004)Google Scholar
25. Tu, J.W.M. K.N., Feldman, L.C., Electronic thin Film Science: For Electrical Engineers and Materials Scientists 1992, New York: Macmillan Publishing Company,. 428.Google Scholar
26. Garvie, R.C., J. Phys. Chem. 82(2) 218 (1978)Google Scholar