Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:30:16.579Z Has data issue: false hasContentIssue false

Ion Irradiation of Ternary Pyrochlores

Published online by Cambridge University Press:  20 February 2017

Karl R. Whittle
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Katherine L. Smith
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Mark G. Blackford
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Simon A.T. Redfern
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, United Kingdom
Elizabeth J. Harvey
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, United Kingdom
Nestor J. Zaluzec
Affiliation:
Materials Science Division, Argonne National Laboratory, Chicago, Illinois, USA
Gregory R. Lumpkin
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Get access

Abstract

Synthetic pyrochlore samples Y2Ti2-xSnxO7 (x=0.4, 0.8, 1.2, 1.6), Nd2Zr2O7, Nd2Zr1.2Ti0.8O7, and La1.6Y0.4Hf2O7, were irradiated in-situ using the IVEM-TANDEM microscope facility at the Argonne National Laboratory. The critical temperatures for amorphisation have revealed a dramatic increase in tolerance with increasing Sn content for the Y2Ti2-xSnxO7 series. This change has also found to be linear with increasing Sn content. Nd2Zr1.2Ti0.8O7 and La1.6Y0.4Hf2O7 were both found to amorphise, while Nd2Zr2O7 was found to be stable to high doses (2.5×10^15 ions cm-2). The observed results are presented with respect to previously published results for irradiation stability predictions and structural disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, N.; Grey, C. P., Journal of Solid State Chemistry 2003, 175, (1), 110115.Google Scholar
2. Lian, J.; Wang, L. M.; Wang, S. X.; Chen, J.; Boatner, L. A.; Ewing, R. C., Physical Review Letters 2001, 8714, (14), art. no.-145901.Google Scholar
3. Poulsen, F. W.; Glerup, M.; Holtappels, P., Solid State Ionics 2000, 135, (1–4), 595602.Google Scholar
4. Wilde, P. J.; Catlow, C. R. A., Solid State Ionics 1998, 112, (3–4), 185195.Google Scholar
5. Wang, S. X.; Begg, B. D.; Wang, L. M.; Ewing, R. C.; Weber, W. J.; Kutty, K. V. G., Journal of Materials Research 1999, 14, (12), 44704473.Google Scholar
6. Wang, S. X.; Wang, L. M.; Ewing, R. C.; Kutty, K. V. G., Nuclear Instruments & Methods in Physics Research Section B- Beam Interactions with Materials and Atoms 2000, 169, 135140.Google Scholar
7. Yudintsev, S. V., Geology of Ore Deposits 2003, 45, (2), 151165.Google Scholar
8. Chakoumakos, B. C., Journal of Solid State Chemistry 1984, 53, (1), 120129.Google Scholar
9. Subramanian, M. A.; Aravamudan, G.; Rao, G. V. S., Progress in Solid State Chemistry 1983, 15, (2), 55143.Google Scholar
10. Lian, J.; Chen, J.; Wang, L. M.; Ewing, R. C.; Farmer, J. M.; Boatner, L. A.; Helean, K. B., Physical Review B 2003, 68, (13), art. no.-134107.Google Scholar
11. Meldrum, A.; Boatner, L. A.; Ewing, R. C., Physical Review Letters 2002, 8802, (2), art. no.-025503.Google Scholar
12. Zhu, S.; Zu, X. T.; Wang, L. M.; Ewing, R. C., Applied Physics Letters 2002, 80, (23), 43274329.Google Scholar
13. Lian, J.; Zu, X. T.; Kutty, K. V. G.; Chen, J.; Wang, L. M.; Ewing, R. C., Physical Review B 2002, 66, (5), 054108.Google Scholar
14. Lumpkin, G. R.; Pruneda, J. M.; Rios, S.; Smith, K. L.; Trachenko, K.; Whittle, K. R.; Zaluzec, N. J., Journal Of Solid State Chemistry 2007, 180, (4), 15121518.Google Scholar
15. Whittle, K. R.; Cranswick, L. M.; Redfern, S. A. T.; Swainson, I. P.; Lumpkin, G. R., Journal of Solid State Chemistry 2009, Awaiting Publication.Google Scholar
16. Ashbrook, S. E.; Whittle, K. R.; Lumpkin, G. R.; Farnan, I., Journal Of Physical Chemistry B 2006, 110, (21), 1035810364.Google Scholar
17. Harvey, E. J.; Whittle, K. R.; Lumpkin, G. R.; Smith, R. I.; Redfern, S. A. T., Journal Of Solid State Chemistry 2005, 178, (3), 800810.Google Scholar
18. Lumpkin, G. R.; Smith, K. L.; Blackford, M. G.; Thomas, B. S.; Whittle, K. R.; Marks, N. A.; Zaluzec, N. J., Physical Review B 2008, 77, (21), 212401.Google Scholar
19. Lian, J.; Chen, J.; Wang, L. M.; Ewing, R. C.; Farmer, J. M.; Boatner, L. A.; Helean, K. B., Physical Review B 2003, 68, (13), 134107.Google Scholar
20. Kennedy, B. J.; Hunter, B. A.; Howard, C. J., Journal of Solid State Chemistry 1997, 130, (1), 5865.Google Scholar
21. Ewing, R. C.; Lian, J.; Wang, L. M. in: Ion beam-induced amorphization of the pyrochlore structure type:a review, Radiation Effects and Ion Beam Modification of Materials, Boston, 2004;Google Scholar
Wang, L. M.; Fromknecht, R.; Snead, L. L.; Downey, D. F.; Takahashi, H., (Eds.) Materials Research Society: Boston, 2004; pp 3748.Google Scholar