The present work presents the synthesis, characterization and evaluation of the biocompatibility and ability to dissolve and chemically protect the anticancer drug doxorubicin (DOXO) of two polyethylene oxide-polystyrene oxide triblock copolymers, EO33SO13EO33 and EO38SO10EO38, where EO and SO denote the ethylene oxide and styrene oxide blocks, respectively. Block copolymer length and SO/EO ratio were selected with the objective of ensuring an optimal compromise between chain solubility, micelle formation ability and core size for enhanced drug solubilization. The temporal stability of the drug-loaded micelles and drug release profile were also analyzed as well as their efficacy as an antitumoral polymeric formulation in vitro by using a multidrug resistant ovarian tumor cell line (NCI-ADR-RES), with the special aim of analyzing the possible capability of both copolymers as potential P-glycoprotein efflux (P-gp) pump inhibitors to enhance DOXO accumulation in this cell line.