Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T03:40:45.241Z Has data issue: false hasContentIssue false

Polyethylene Oxide-Polystyrene Oxide Triblock Copolymers as Biological-Responsive Nanocarriers.

Published online by Cambridge University Press:  03 September 2012

Adriana Cambón
Affiliation:
Grupo de Física de Coloides y Polímeros, Facultad de Física, Universidad de Santiago de Compostela, Spain.
Ana Rey-Rico
Affiliation:
Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, Spain.
Silvia Barbosa*
Affiliation:
Grupo de Física de Coloides y Polímeros, Facultad de Física, Universidad de Santiago de Compostela, Spain.
Jose Brea
Affiliation:
Departamento de Farmacología, Universidad de Santiago de Compostela, Spain.
M. I. Loza
Affiliation:
Departamento de Farmacología, Universidad de Santiago de Compostela, Spain.
Stephen G. Yeates
Affiliation:
Organic Materials Innovation Center, School of Chemistry, University of Manchester, UK.
Carmen Alvarez-Lorenzo
Affiliation:
Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, Spain.
Angel Concheiro
Affiliation:
Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, Spain.
Pablo Taboada
Affiliation:
Grupo de Física de Coloides y Polímeros, Facultad de Física, Universidad de Santiago de Compostela, Spain.
Victor Mosquera
Affiliation:
Grupo de Física de Coloides y Polímeros, Facultad de Física, Universidad de Santiago de Compostela, Spain.
Get access

Abstract

The present work presents the synthesis, characterization and evaluation of the biocompatibility and ability to dissolve and chemically protect the anticancer drug doxorubicin (DOXO) of two polyethylene oxide-polystyrene oxide triblock copolymers, EO33SO13EO33 and EO38SO10EO38, where EO and SO denote the ethylene oxide and styrene oxide blocks, respectively. Block copolymer length and SO/EO ratio were selected with the objective of ensuring an optimal compromise between chain solubility, micelle formation ability and core size for enhanced drug solubilization. The temporal stability of the drug-loaded micelles and drug release profile were also analyzed as well as their efficacy as an antitumoral polymeric formulation in vitro by using a multidrug resistant ovarian tumor cell line (NCI-ADR-RES), with the special aim of analyzing the possible capability of both copolymers as potential P-glycoprotein efflux (P-gp) pump inhibitors to enhance DOXO accumulation in this cell line.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, H., Yang, J., Lee, J., Haam, S., Choi, I. H. and Yoo, K. H., ACS Nano. 3, 2919(2009)Google Scholar
2. Lee, S. M., Park, H., and Yoo, K. H., Adv. Mater., 22, 4049 (2010).Google Scholar
3. Ferrar, M., Nat. Rev. Cancer, 5, 161 (2005).10.1038/nrc1566Google Scholar
4. Farokhazd, O. C. and Langer, R., Adv. Drug Del. Rev., 58, 1456 (2006).10.1016/j.addr.2006.09.011Google Scholar
5. Cho, K., Wang, X., Nie, S., Chen, Z. and Shin, D. M., Clin. Cancer Res., 14, 1310 (2008).Google Scholar
6. Oerlemans, C., Bult, W., Bos, M., Storm, G., Nijsen, J. F., Hennink, W. E., W. E. Pharm. Res., 27, 2569 (2010).Google Scholar
7. Wiradharma, N., Zhang, Y., Venkataraman, S., Hedrick, J. L. and Yang, Y. Y., Y. Y. Nano Today, 4, 302 (2009).10.1016/j.nantod.2009.06.001Google Scholar
8. Fox, M. E., Szoka, F. C. and Fréchet, J.M.J., Acc. Chem. Res., 42, 1141 (2009).Google Scholar
9. Gao, W., Chan, J. M. and Farokhzad, O., Mol. Pharm., 7, 1913 (2010).10.1021/mp100253eGoogle Scholar
10. Attwood, D., Booth, C. and Price, C., Phys. Chem. Chem. Phys. 8, 3612 (2006).Google Scholar
11. Crothers, M., Attwood, D., Collett, J. H., Yang, Z., Booth, C., Taboada, P., Mosquera, V., V. and Martini, L. G. A., Langmuir, 18, 8685 (2002).10.1021/la026086mGoogle Scholar
12. Cambón A, A., Barbosa, S., Rey-Rico, A., Figueroa-Ochoa, E., Soltero, J. F. A., Yeates, S. G., Alvarez-Lorenzo, C., Concheiro, A., Taboada, P. and Mosquera, V., J. Phys. Chem. B. Submitted.Google Scholar
13. Cavet, M. E., Harrington, K. L., VanDerMeid, K. R., Ward, K. W. and Zhang, J. Z., J.-Z. Cont. Lens Ant. Eye, 32, 171 (2009).10.1016/j.clae.2009.05.002Google Scholar
14. Crothers, M., Zhou, Z., Ricardo, N. P. S. M., Yang, Z., Taboada, P., Chaibundit, C., Attwood, D., Booth, C., Int. J. Pharm. 293, 91 (2005).Google Scholar
15. Chiapetta, D. A., Alvarez-Lorenzo, C., Rey-Rico, A., Taboada, P., Concheiro, A., Sosnik, A., Eur. J. Pharm. Biopharm. 76, 24 (2010).10.1016/j.ejpb.2010.05.007Google Scholar
16. Alvarez-Lorenzo, C., Rey-Rico, A., Brea, J., loza, M. I., Concheiro, A., Sosnik, A., Nanomedicine, 5, 1371 (2010).Google Scholar
17. Roschke, A. V., Tonon, G., Gehlhaus, K. S., McTyre, N., Bussey, K. J., Lababidi, S., Scudiero, D.A., Weinstein, J. N. and Kirsch, I. R., Cancer Res., 63, 8634 (2003).Google Scholar
18. Perez-Tomas, R., Curr. Med. Chem., 13, 1859 (2006).Google Scholar
19. Shen, F., Chu, S., Vence, A. K., Bailey, B., Xue, X., Erickson, P. A., Montrose, M. H., Beck, W.T. and Erickson, L. C.., J. Pharmacol. Exp. Ther., 324, 95 (2008).10.1124/jpet.107.127704Google Scholar
20. Lee, Y., Park, S. Y., Mok, H. and Park, T. G., Bioconjugate Chem., 19, 525 (2008).Google Scholar
21. Kabanov, A. V., Adv. Drug Deliv. Rev, 58, 1597 (2006)Google Scholar