Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T03:43:39.150Z Has data issue: false hasContentIssue false

Preparation of Small Silicon Carbide Quantum Dots by Wet Chemical Etching

Published online by Cambridge University Press:  08 January 2013

D. Beke
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
Zs. Szekrényes
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary
I. Balogh
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary
M. Veres
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary
É Fazakas
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary
L. K. Varga
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary
Zs. Czigány
Affiliation:
Institute for Technical Physics and Materials Science, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary
K. Kamarás
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary
A. Gali
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
Get access

Abstract

Luminescence nanocrystals or quantum dots give grate potential for bio-analysis as well as optoelectronics. Here we report an effective and non-expensive fabrication method of silicon carbide nanocrystals, with diameter below 10 nm, based on electroless wet chemical etching. Our samples show strong violet-blue emission in the 410-450 nm region depending on the used solvents and particle size. Raman and infrared measurements suggest the varied nature of surfaces of silicon carbide nanocrystals which elucidate the behavior of the silicon carbide colloid solvents and also give opportunity to modify the surface easily for specific biological, medical or other application.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Medintz, I. L., Uyeda, H. T., Goldman, E. R. and Mattoussi, H., Nature Mat. 4, 435446 (2005)10.1038/nmat1390CrossRefGoogle Scholar
Kim, S., Fisher, B., Eisler, H. J., and Bawendi, M., J. Am. Chem. Soc., 125 (38), 1146611467 (2003).CrossRefGoogle Scholar
Cao, Y. W., Aksenton, J., Soloviev, V.. and Banin, U., MRS Proc., 571 : 75 (1999).CrossRefGoogle Scholar
Hardman, R., Environ Health Perspect 114, 165172 (2006).10.1289/ehp.8284CrossRefGoogle Scholar
Wu, X., Fan, J., Qiu, T., Yang, X., Siu, G., and Chu, P. K., Phys. Rev. Lett. 94, 69 (2005).Google Scholar
Fan, J. Y., Wu, X. L., Li, H. X., Liu, H. W., Siu, G. G., and Chu, P. K., App. Phys. Lett. 88, 041909 (2006).10.1063/1.2168018CrossRefGoogle Scholar
Botsoa, J., Bluet, J. M., Lysenko, V., Marty, O., Barbier, D., and Guillot, G., J. of App. Phys. 102, 083526 (2007).CrossRefGoogle Scholar
Makkai, Z., Pécz, B., Bársony, I., Vida, G., Pongrácz, A., Josepovits, K. V., Deák, P., App. Phys. Let. 86 (25) 253109. (2005).CrossRefGoogle Scholar
Coletti, C., Jaroszeski, M. J., Pallaoro, A.; Hoff, A. M.; Iannotta, S. and Saddow, S. E., IEEE EMBS Proceedings, 5849-5852 (2007).Google Scholar
Raya, C. T., Maldonado, D. H., Rico, J. R., Gañan, C. G., de A. Lopez, A. R. and Fernandez, J. M.-, J. Mat. Res., 23, 32473254 (2008).10.1557/JMR.2008.0392CrossRefGoogle Scholar
Botsoa, J., Lysenko, V., Géloën, A., Marty, O., Bluet, J. M., and Guillot, G., App. Phys Let. 92, 173902 (2008).10.1063/1.2919731CrossRefGoogle Scholar
Norfolk, C., Mukasyan, A., Hayes, D., McGinn, P., and Varma, A., Carbon 44, 293 (2006)10.1016/j.carbon.2005.07.020CrossRefGoogle Scholar
Zhu, J., Liu, Z., Wu, X. L., Xu, L. L., Zhang, W. C., and Chu, P. K., Nanotechnology 18, 365603 (2007).CrossRefGoogle Scholar
Li, Y., Chen, C., Li, J. T., Yang, Y. and Lin, Z. M., Nanoscale Res. Lett., 6 454 (2011)CrossRefGoogle Scholar
Beke, D., Szekrényes, Zs., Balogh, I., Veres, M., Fazakas, É., Varga, L. K.., Kamarás, K., Czigány, Zs., and Gali, A., Appl. Phys. Lett. 99, 213108 (2011).10.1063/1.3663220CrossRefGoogle Scholar
Vörös, M., Deák, P., Frauenheim, T., and Gali, Á., J. Chem. Phys. 133, 064705 (2010); Mater. Sci. Forum 679-680, 520(2011).10.1063/1.3464482CrossRefGoogle Scholar