This paper presents that the fine tuning of efficient fluorescence emission in a very wide range of wavelength from near-UV through visible to near-IR by control over size, structural phase, and surface of germanium nanoparticles (Ge NPs). To achieve this, we prepared two parent samples composed of NPs with different emission photon energies, and separated the NPs by emission color through a combinatorial column techniques. In the NPs obtained by the separation, the spectral line widths of each emission became very narrow. Furthermore, the absolute fluorescence quantum yields for each emission were high enough for the industrial use of fluorescence labeling tags. Another scientific impact is the finding of new family of luminescent Ge, that is, the NPs emitting the lights in the violet and green-gap wavelength regions, respectively. It is commonly believed that a broad spectral line width frequently observed from Ge NP appears due to an indirect bandgap nature inherited even in nanostructures, but the present study provides obvious experimental evidences that a broad luminescence spectrum is expressed as ensemble of different spectral lines, and can be separated into the fractions emitting the lights in each wavelength region by the appropriate post-synthetic process.