Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T05:38:21.410Z Has data issue: false hasContentIssue false

Nano-scale Chemistry of Complex Self-Assembled Nanostructures in Epitaxial SiGe Films

Published online by Cambridge University Press:  28 August 2013

Prabhu Balasubramanian*
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
Jerrold A. Floro
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
Jennifer L. Gray
Affiliation:
Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
Robert Hull
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
*
a)Electronic Mail: [email protected]
Get access

Abstract

Heteroepitaxy of SiGe alloys on Si (001) under certain growth conditions has previously been shown to cause self-assembly of nanostructures called Quantum Dot Molecules, QDMs, where pyramidal pits and 3D islands cooperatively form. QDMs have potential applications to nanologic device architectures such as Quantum Cellular Automata that relies on localization of charges inside islands to create bi-stable logic states. In order to determine the applicability of QDMs to such structures it is necessary to understand the nano-scale chemistry of QDMs because the chemistry affects local bandgap which in turn affects a QDM’s charge confinement property. We investigate the nanoscale chemistry of QDMs in the Si0.7Ge0.3/Si (100) system using Auger Electron Spectroscopy (AES). Our AES analysis indicates that compressively strained QDM pit bases are the most Ge rich regions in a QDM. The segregation of Ge to these locations cannot be explained by strain energy minimization.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eaglesham, D. J. and Cerullo, M., Physical Review Letters 64 (16), 19431946 (1990).CrossRefGoogle Scholar
Mo, Y. W., Savage, D. E., Swartzentruber, B. S. and Lagally, M. G., Physical Review Letters 65 (8), 10201023 (1990).CrossRefGoogle Scholar
L. F. K. Hammar, M, Tersoff, J, Reuter, M C, Tromp, R M, Surface Science 349 (2) (1996).CrossRefGoogle Scholar
Gray, J. L., Hull, R. and Floro, J. A., Applied Physics Letters 81 (13), 24452447 (2002).CrossRefGoogle Scholar
Deng, X. and Krishnamurthy, M., Physical Review Letters 81 (7), 14731476 (1998).CrossRefGoogle Scholar
Lent, C. S. and Tougaw, P. D., Proceedings of the Ieee 85 (4), 541557 (1997).CrossRefGoogle Scholar
Amlani, I., Orlov, A. O., Toth, G., Bernstein, G. H., Lent, C. S. and Snider, G. L., Science 284 (5412), 289-291 (1999).CrossRefGoogle Scholar
Powell, C. J. and Jablonski, A., NIST Electron Inelastic-Mean-Free-Path Database - Version 1.2. (National Institute of Standards and Technology, Gaithersburg, MD, 2010).Google Scholar
Prutton, M., Larson, L. A. and Poppa, H., Journal of Applied Physics 54 (1), 374381 (1983).CrossRefGoogle Scholar
Thomas, S., Journal of Applied Physics 45 (1), 161166 (1974).CrossRefGoogle Scholar
Ichimura, S. and Shimizu, R., Journal of Applied Physics 50 (9), 60206022 (1979).CrossRefGoogle Scholar
Pantano, C. G. and Madey, T. E., Applied Surface Science 7 (1-2), 115141 (1981).CrossRefGoogle Scholar
Cazaux, J., Surface Science 125 (2), 335354 (1983).CrossRefGoogle Scholar
Seah, M. P., Surface and Interface Analysis 33 (12), 950953 (2002).CrossRefGoogle Scholar
Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V. and Gauvin, R., Scanning 29 (3), 92101 (2007).CrossRefGoogle ScholarPubMed
Jablonski, A. and Powell, C. J., NIST Backscattering-Correction-Factor Database for Auger Electron Spectroscopy, Version 1.0. (National Institute of Standards and Technology, Gaithersburg, Maryland, 2011).Google Scholar
Leite, M. S., Gray, J. L., Hull, R., Floro, J. A., Magalhaes-Paniago, R. and Medeiros-Ribeiro, G., Physical Review B 73 (12), 4 (2006).CrossRefGoogle Scholar
Cullis, A. G., Robbins, D. J., Pidduck, A. J. and Smith, P. W., Journal of Crystal Growth 123 (3-4), 333343 (1992).CrossRefGoogle Scholar
Spencer, B. J., Voorhees, P. W. and Tersoff, J., Physical Review B 64 (23), 31 (2001).CrossRefGoogle Scholar
Wu, C. C. and Hull, R., Journal of Applied Physics 100 (8) (2006).Google Scholar