We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/minmag/Default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sulfosalt assemblages in a specimen from the Boliden Au–Cu–(As) deposit in northern Sweden, comprise micrometre to nanometre scale intergrowths of Se-rich izoklakeite and tintinaite with average formulae and calculated homologue number (N) given as: (Cu1.88Fe0.18)2.06(Pb22.92Ag1.47Cd0.01Zn0.01)24.41(Sb13.12Bi8.69)21.8(S50.19Se6.43Te0.12)56.73,N = 3.83, and (Cu1.31Fe0.74)2.05(Pb10.58Ag0.18Cd0.05Zn0.02)10.83(Sb10.2Bi5.23)15.43(S32.22Se2.46)34.7, N = 2.05, respectively. Tintinaite coexists with (Bi, Se)-rich jamesonite. High-angle annular dark field scanning transmission electron microscopy (HAADF STEM) imaging reveals chessboard structures comprising PbS and SnS modules with the number of atoms in the octahedral (M) sites counted as: n1 = 18 and n2 = 8 for tintinaite and n1 = 30 and n2 = 16 for izoklakeite. The homologue number can be calculated using the formula: N = (n1/6)–1 and N = n2/4 for PbS and SnS modules giving NTti = 2 and NIz = 4. A new N = 3 homologue, defined by n = 12 and n = 24 SnS and PbS modules, respectively, is identified as single or double units within areas with intergrowths between kobellite and izoklakeite. HAADF STEM imaging also reveals features attributable to lone electron pair micelles within the Sb-rich kobellite homologues. Atomic-resolution EDS STEM chemical mapping of Pb–Bi–Sb-sulfosalts shows a correlation with crystal structural modularity. The maps also highlight sites in the SnS modules of tintinaite in which Sb > Bi. Coherent nanoscale intergrowths between tintinaite and izoklakeite define jigsaw patterns evolving from chessboard structures and are considered to have formed during co-crystallisation of the two phases. Displacement textures and crosscutting veinlets (a few nm in width) are interpreted as evidence for superimposed syn-metamorphic deformation and are associated with the redistribution of Bi and Se. Imaging and mapping using HAADF STEM techniques is well suited to characterisation of Pb–Sb–Bi-sulfosalt phases, offering largely untapped potential to unravel the evolution of chessboard structures with applications across mineralogy but also extending into allied fields.
The impact of temperature on the migration of cations within layers of clay minerals is of profound significance for the design and practical application of materials derived from clay minerals. This study focuses on Li+ and Na+ as representative cations, together with illite (Ilt) and montmorillonite (Mnt) as representative clay minerals. The study investigates the behaviour of cation migration and occupation within clay minerals across varying temperatures. A series of samples were prepared meticulously by immersing illite and montmorillonite in Li+ and Na+ solutions, subsequently subjecting them to different temperatures (unheated, 100, 150, 200, 250 and 300°C) for 24 h. Through the use of techniques such as X-ray diffraction (XRD), cation exchange capacity (CEC), Fourier-transform infrared spectroscopy (FTIR), magic angle rotating solid nuclear magnetic resonance spectroscopy (MAS NMR), and X-ray photoelectron spectroscopy (XPS), the study discerns structural transformations in illite and montmorillonite, and tracks the migration and occupation of Li+ and Na+. The findings reveal that following heating, Na+ and Li+ do not infiltrate the lattice of illite. For montmorillonite, Na+ also does not migrate into the montmorillonite lattice, however, in contrast, Li+ does exhibit migration into this lattice. Notably, the migration and occupation of interlayer Li+ within montmorillonite exhibit discernible temperature dependence. Specifically, upon reaching 150°C, interlayer Li+ migrate to ditrigonal cavities within the tetrahedral layers. As the temperature elevates to 200°C, Li+ further permeate vacant octahedral sites through the ditrigonal cavities, culminating in the formation of a localised trioctahedral structure.
Organic acids are commonly found in soils and sediments, playing an important role in the alteration and weathering of minerals and influencing a series of geochemical processes such as soil fertility, metal cycling and pollutant migration. In order to better comprehend the reaction mechanisms of different layered silicate minerals with organic acids, three minerals with various structure types, namely montmorillonite, kaolinite and muscovite, were investigated in this work. In particular, the effects of interfacial reactions with oxalic acid on the crystal structure, chemical composition, morphology and specific surface area of minerals were compared. The composition and structure of montmorillonite, kaolinite and muscovite during the interfacial reaction with oxalic acid were characterised using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) methods. It was shown that Si4+ and Al3+ were dissolved gradually during the interfacial reactions and that the changes in the properties of minerals depended on structural characteristics. After 300 days of the interfacial reactions with oxalic acid, the dissolution percentages of Si4+ and Al3+ in montmorillonite, kaolinite and muscovite were 12.7%, 8.4%, 3.8% and 62.1%, 30.7%, 6.1%, respectively. Moreover, the lamellar morphology of montmorillonite was destroyed upon the interfacial reaction with oxalic acid, and irregular particles with sizes of ~100–500 nm were formed on the surface. The diameter of kaolinite flake particles decreased from 400–1500 nm to 50–400 nm, and the surface of rod-shaped particles was ruptured. The small particles disappeared from the muscovite surface, and the initially sharp edges became blunted. The specific surface area and the total pore volume of montmorillonite and kaolinite increased after the interfacial reaction with oxalic acid, whereas the opposite results were obtained for muscovite. The differential dissolution of the minerals during their interfacial reaction with oxalic acid was mainly related to the differences between cation occupancies, structural types, chemical bond strengths and specific surface areas.