It is our purpose here to show that, using results already in the literature, it is easy to prove the following and similar theorems.
For every positive integer d, there exists an integer Ψ (d) such that if K is an algebraic number field of degree d over the field of rational numbers then every cubic form f(x1 x2, …, xn) over K, with n ≥ Ψ(d), has a non-trivial zero in K.