A bilinear map ø Ra x Rb → Rc is non-singular if ø (x, y) = 0 implies x = 0 or y = 0. For background information on such maps see (4, 5, 6, 14). If we apply the ‘Hopf construction’ to ø, we get a map
defined by 2ø(x, y)) for all x ∈ Ra, y ∈ Rb satisfying ∥x∥2 + ∥y∥2 = 1. Homotopically, Jø coincides with the map obtained by first restricting and normalizing ø to , and then applying the standard Hopf construction ((13), p. 112). In any case, one gets an element [Jø] in , which in turn determines a stable homotopy class of spheres {Jø} in the d-stem , where d = a + b − c −1. An element in which equals {Jø} for some non-singular bilinear map ø will be called bilinearly representable. The first purpose of this paper is to prove