Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T13:46:59.908Z Has data issue: false hasContentIssue false

On the analytic equivalence of curves

Published online by Cambridge University Press:  24 October 2008

Joan Elias
Affiliation:
Departament de Geometria i Topologia, Universitat de Barcelona, Spain

Extract

Throughout this paper k will be an algebraically closed field, R the ring k[[X1, …, XN]] and (kN, 0) the k-scheme Spec(R).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Casas, E.. Sobre el cálculo efectivo del género de las curvas algebraicas. Collect. Math. 25 (1974), 311.Google Scholar
[2]Hironaka, H.. Equivalences and deformations of isolated singularities. Notes of the Woods Hole Seminar in Algebraic Geometry, 1964.Google Scholar
[3]Hironaka, H.. Resolution of singularities of a variety over a field of characteristic zero: I, II. Ann. of Math. 79 (1964), 109203, 205326.Google Scholar
[4]Hironaka, H. and Rossi, H.. On the equivalence of imbedding of exceptional complex spaces. Math. Ann. 156 (1964), 313333.CrossRefGoogle Scholar
[5]Kirby, D.. The reduction number of a one-dimensional local ring. J. London Math. Soc. (2) 10 (1975), 471481.Google Scholar
[6]Matlis, E.. 1-Dimensional Cohen–Macaulay Rings. Lecture Notes in Mathematics No. 327 (Springer-Verlag, 1977).Google Scholar
[7]Nobile, A.. On equisingular deformations of plane curve singularities. Illinois J. Math. 22 (1978), 476498.Google Scholar
[8]Northcott, D. G.. On the notion of a first neighbourhood ring with an application to the AF + Bø theorem. Math. Proc. Cambridge Philos. Soc. 53 (1957), 4356.CrossRefGoogle Scholar
[9]Samuel, P.. Algébricité de certains points singuliers algébroides. J. Math. Pures Appl. 35 (1956), 16.Google Scholar
[10]Schenzel, P.. Uber die freien Aufiösungen extremaler Cohen-Macaulay Ringe. J. Algebra 64 (1980), 93101.Google Scholar
[11]Serre, J. P.. Groupes Algébriques et Corps de Classes. Actualités scientifiques et industrielles 1264 (Hermann, 1959).Google Scholar