No CrossRef data available.
Incompleteness of (nq + n - q - 2, n)-arcs in finite projective planes of even order
Published online by Cambridge University Press: 24 October 2008
Extract
1. It was shown by Barlotti (1) that the number k of points on a (k, n)-arc of a finite projective piane of order q
and that if q ≢ 0 (mod n) then for n ≥ 3
.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 91 , Issue 1 , January 1982 , pp. 1 - 8
- Copyright
- Copyright © Cambridge Philosophical Society 1982
References
REFERENCES
(1)Barlotti, A.Sui {k, n}-archi di un piano lineare finito. Boll. Un. Mat. Ital. 11 (1956), 553–556.Google Scholar
(2)Bruck, R. H. and Ryser, H. J.The non-existence of certain finite projective planes. Canad. J. Math. 1 (1949), 88–93.CrossRefGoogle Scholar
(3)Denniston, R. H. F.Some maximal arca in finite projective planes. J. Comb. Theory 6 (1969), 217–319.Google Scholar
(4)Hall, M., Swift, J. D. and Walker, R. J.Uniqueness of the projective piane of order eight. Math. Tables Aids Comput. 10 (1956), 186–194.CrossRefGoogle Scholar
(5)Segre, B.Introduction to Galois Geometries. Atti. Accad. Naz. Lincei Mem. 8 (1967), 133–236.Google Scholar
(6)Thas, J. A.Some results concerning {(q + 1) (n – 1), n}-arcs and {(g + 1) (n – 1)+ 1, n}-arcs in finite projective planes of order q. J. Comb. Theory 19 (1975), 228–232.CrossRefGoogle Scholar