Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:50:50.308Z Has data issue: false hasContentIssue false

Fourier coefficients of cusp forms

Published online by Cambridge University Press:  24 October 2008

R. A. Rankin
Affiliation:
University of Glasgow

Extract

The object of this survey article is to trace the influence on the theory of modular forms of the ideas contained in L. J. Mordell's important paper ‘On Mr Ramanujan's empirical expansions of modular functions’, which appeared in October 1917 in this Society's Proceedings [32]. The equally important paper [42] by S. Ramanujan, ‘On certain arithmetical functions’, referred to in Mordell's title, was published in May 1916 in the same Society's older journal, the Transactions, which was regrettably suppressed in 1928, 107 years after its foundation. Ramanujan's paper was concerned not only with multiplicative properties of Fourier coefficients of modular forms, but also with their order of magnitude. Since subsequent papers on the latter subject have also appeared in the Proceedings, it seems appropriate to include further developments in this field of study in the present survey.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Atkin, A. O. L. and Lerner, J.. Hecke operators on Λ0(m). Math. Ann. 185 (1969), 134160.CrossRefGoogle Scholar
[2]Atkin, A. O. L. and Li, W.-C. W.. Twists of newforms and pseudo-eigenvalues. Invent. Math. 48 (1978), 221243.CrossRefGoogle Scholar
[3]Birch, B. J.. A look back at Ramanujan's notebooks. Math. Proc. Cambridge Philos. Soc. 78 (1975), 7379.CrossRefGoogle Scholar
[4]Davenport, H.. On certain exponential sums. J. Reine Angew. Math. 169 (1932), 158176.Google Scholar
[5]Deligne, P.. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 53 (1974), 273307.CrossRefGoogle Scholar
[6]Elliott, P. D. T. A., Moreno, C. J. and Shahidi, F.. On the absolute value of Ramanujan's τ-function. Math. Ann. 266 (1984), 507511.CrossRefGoogle Scholar
[7]Glaisher, J. W. L.. On the function χ(n). Quart. J. Math. 20 (1885), 97167.Google Scholar
[8]Glaisher, J. W. L.. On the representations of a number as the sum of four squares, and on some allied arithmetical functions. Quart. J. Math. 36 (1905), 305358.Google Scholar
[9]Glaisher, J. W. L., The arithmetical functions P(m), Q(m), Ω(m). Quart. J. Math. 37 (1906), 3648.Google Scholar
[10]Glaisher, J. W. L.. On the representations of a number as the sum of two, four, six, eight, ten and twelve squares. Quart. J. Math. 38 (1907), 162.Google Scholar
[11]Glaisher, J. W. L.. On the number of representations of a number as the sum of fourteen and sixteen squares. Quart. J. Math. 38 (1907), 178236.Google Scholar
[12]Glaisher, J. W. L.. On the representations of a number as the sum of eighteen squares. Quart. J. Math. 38 (1907), 289351.Google Scholar
[13]Hardy, G. H.. Note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Philos. Soc. Soc. 23 (1927), 675680CrossRefGoogle Scholar
Hardy, G. H.. Note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Philos. Soc. Soc. [16], pp. 358363.Google Scholar
[14]Hardy, G. H.. A further note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Philos. Soc. 34 (1938), 309315CrossRefGoogle Scholar
Hardy, G. H.. A further note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Philos. Soc. [16], pp. 369375.Google Scholar
[15]Hardy, G. H.. Ramanujan (Cambridge University Press, 1940).Google Scholar
[16]Hardy, G. H.. Collected Papers, vol. II (Oxford, Clarendon Press, 1967).Google Scholar
[17]Hecke, E.. Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Zweite Mitteilung. Math. Z. 6 (1920), 1151CrossRefGoogle Scholar
Hecke, E.. Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Zweite Mitteilung. Math. Z. [22], pp. 249289.Google Scholar
[18]Hecke, E.. Die Primzahlen in der Theorie der elliptischen Modulfunktionen. Kgl. Danske Videnskabernes Selskab. Math.-fys. Meddelelser XIII. 10 (1935), 116Google Scholar
Hecke, E.. Die Primzahlen in der Theorie der elliptischen Modulfunktionen. Kgl. Danske Videnskabernes Selskab. Math.-fys. Meddelelser XIII. [22], pp. 577590.Google Scholar
[19]Hecke, E.. Neuere Fortschritte in der Theorie der elliptischen Modulfunktionen. Comptes rendus du Congrès International des Mathématiciens, Oslo 1936, pp. 140156; [22] pp. 627643.Google Scholar
[20]Hecke, E.. Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I. Math. Ann. 114 (1937), 128II. Math. Ann. 114 (1937), 316351; pp. [22] 644707.CrossRefGoogle Scholar
[21]Hecke, E.. Herleitung des Euler-Produktes der Zetafunktion und einiger L-Reihen aus ihrer Funktionalgleichung. Math. Ann. 119 (1944), 266287 [22], pp. 919940.CrossRefGoogle Scholar
[22]Hecke, E.. Mathematische Werke (Vandeahoeck & Ruprecht, 1983).Google Scholar
[23]Hurwitz, A.. Grundlagen einer independenten Theorie der elliptischen Modulfunktionen der Multiplikator-Gleichungen erste Stufe. Math. Ann. 18 (1881), 528592.CrossRefGoogle Scholar
[24]Hurwitz, A.. Mathematische Werke, vol. I. (Birkhäuser, 1932), pp. 166.CrossRefGoogle Scholar
[25]Joris, H.. Ω-Sätze für zwei arithmetiche Funktionen. Comment. Math. Helv. 47 (1972), 220248.CrossRefGoogle Scholar
[26]Joris, H.. An Ω-result for the coefficients of cusp forms. Mathematika 22 (1975), 1219.CrossRefGoogle Scholar
[27]Kloosterman, H. D.. Asymptotische Formeln für die Fourierkoeffizienten ganzer Modulformen. Abh. Math. Sem. Univ. Hamburg 5 (1927), 337352.CrossRefGoogle Scholar
[28]Landau, E.. Über die Anzahl der Gitterpunkte in gewissen Bereichen. II. Nachr. Ges. Wiss. Göttingen (1915), 209243.Google Scholar
[29]Lehmer, D. H.. Note on the distribution of Ramanujan's tau-function. Math. Comp. 24 (1970), 741743.Google Scholar
[30]Li, W.-C. W.. Newforms and functional equations. Math. Ann. 212 (1975), 285315.CrossRefGoogle Scholar
[31]Mordell, L. J.. On the solutions of x 2+y 2+z 2+t 2 = 4m 1m 2. Messenger Math. 47 (1918), 142144.Google Scholar
[32]Mordell, L. J.. On Mr Ramanujan's empirical expansions of modular functions. Proc. Cambridge Philos. Soc. 19 (1917), 117124.Google Scholar
[33]Moreno, C. J. and Shahidi, F.. The fourth moment of Ramanujan's τ-function. Math. Ann. 266 (1983), 233239.CrossRefGoogle Scholar
[34]Ogg, A. P.. On the eigenvalues of Hecke operators. Math. Ann. 179 (1969), 101108.CrossRefGoogle Scholar
[35]Pennington, W. B.. On the order of magnitude of Ramanujan's function τ(n). Proc. Cambridge Philos. Soc. 47 (1951), 668678.CrossRefGoogle Scholar
[36]Petersson, H.. Theorie der automorphen Formen beliebiger reeller Dimension und ihre Darstellung durch eine neue Art Poincaréscher Reihen. Math. Ann. 103 (1930), 369436.CrossRefGoogle Scholar
[37]Petersson, H.. Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math. 58 (1932), 169215.CrossRefGoogle Scholar
[38]Petersson, H.. Über eine Metrisierung der ganzen Modulformen. Jber. Deutsch. Math. Verein. 49 (1939), 4975.Google Scholar
[39]Petersson, H.. Konstruction der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktentwicklung. I. Math. Ann. 116 (1939), 401402CrossRefGoogle Scholar
Petersson, H.. Konstruction der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktentwicklung. II. Math. Ann. 117 (1939), 3964CrossRefGoogle Scholar
Petersson, H.. Konstruction der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktentwicklung. III. Math. Ann. 117 (1940), 277300.CrossRefGoogle Scholar
[40]Raghavan, S.. On Ramanujan and Dirichlet series with Euler products. Glasgow Math. J. 25 (1984), 203206.CrossRefGoogle Scholar
[41]Murty, M. Ram. Oscillations of Fourier coefficients of modular forms. Math. Ann. 262 (1983), 431446.CrossRefGoogle Scholar
[42]Ramanujan, S.. On certain arithmetical functions. Trans. Cambridge Philos. Soc. 22 (1916), 159184; [43] pp. 136162.Google Scholar
[43]Ramanujan, S.. Collected Papers (Cambridge University Press, 1927).Google Scholar
[44]Rangachari, S. S.. Ramanujan and Dirichlet series with Euler products. Proc. Indian Acad. Sci. (Math. Ser.) 91 (1982), 115.CrossRefGoogle Scholar
[45]Rankin, R. A.. Contributions to the theory of Ramanujan's function τ(n) and similar functions. II. The order of the Fourier coefficients of integral modular forms. Proc. Cambridge Philos. Soc. 35 (1939), 357372.CrossRefGoogle Scholar
[46]Rankin, R. A.. Contributions, etc. III. A note on the sum function of the Fourier coefficients of integral modular forms. Proc. Cambridge Philos Soc. 36 (1940), 150151.CrossRefGoogle Scholar
[47]Rankin, R. A.. A certain class of multiplicative functions. Duke Math. J. 13 (1946), 281306.CrossRefGoogle Scholar
[48]Rankin, R. A.. Hecke operators on congruence subgroups of the modular group. Math. Ann. 168 (1967), 4058.CrossRefGoogle Scholar
[49]Rankin, R. A.. An Ω-result for the coefficients of cusp forms. Math. Ann. 203 (1973), 239250.CrossRefGoogle Scholar
[50]Rankin, R. A.. Elementary proofs of relations between Eisenstein series. Proc. Roy. Soc. Edinburgh Sect. A 76 (1976), 107117.CrossRefGoogle Scholar
[51]Rankin, R. A.. Modular forms and functions (Cambridge University Press, 1977).CrossRefGoogle Scholar
[52]Rankin, B. A.. Sums of powers of cusp form coefficients. Math. Ann. 263 (1983), 227236.CrossRefGoogle Scholar
[53]Rankin, R. A.. A family of newforms. Annales Acad. Sci. Fennicae, Ser. A. I. Math. 10 (1985), 461467.Google Scholar
[54]Rankin, R. A.. Sums of powers of cusp form coefficients. II. Math. Ann. 272 (1985), 593600.CrossRefGoogle Scholar
[55]Salié, H.. Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen. Math. Z. 36 (1933), 263278.CrossRefGoogle Scholar
[56]Selberg, A.. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbinden ist. Arch. Math. Naturvid. 43 (1940), 4750.Google Scholar
[57]Selberg, A.. On the estimation of Fourier coefficients of modular forms. Proc. Sympos. Pure Math. 8 (1965), 115. American Mathematical Society.CrossRefGoogle Scholar
[58]Shahidi, F.. On certain L-functions. Amer. J. Math. 103 (1981), 297355.CrossRefGoogle Scholar
[59]Shimura, G.. On modular forms of half integral weight. Ann. of Math. 97 (1973), 440481.CrossRefGoogle Scholar
[60]Stepanov, S. A.. Estimation of Kloosterman sums. Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 308323. (Russian.)Google Scholar
[61]Turton, R. J.. An investigation into the construction of certain multiplicative functions. Part I of a Ph.D. thesis, University of Birmingham, 1956 (unpublished).Google Scholar
[62]Waldspueger, J.-L.. Sur les coefficients do Fourier des formes modulaires de poids demientier. J. Math. Pures Appl. 60 (1981), 375484.Google Scholar
[63]Walfisz, A.. Über die Koeffizientensummen einiger Modulformen. Math. Ann. 108 (1933), 7590.CrossRefGoogle Scholar
[64]Weber, H.. Lehrbuch der Algebra, vol. III (Vieweg, 1909).Google Scholar
[65]Weil, A.. On some exponential sums. Proc. Acad. Sci. U.S.A. 34 (1948), 204207.CrossRefGoogle ScholarPubMed
[66]Wilton, J. R.. A note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Philos. Soc. 25 (1928), 121129.CrossRefGoogle Scholar
[67]Wohlfahrt, K.. Über Operatoren Heckescher Art bei Modulformen reeller Dimension. Math. Nachr. 16 (1957), 233256.CrossRefGoogle Scholar