Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:37:17.276Z Has data issue: false hasContentIssue false

On the coefficients and means of functions omitting values

Published online by Cambridge University Press:  24 October 2008

W. K. Hayman
Affiliation:
Imperial College, London S. W. 7 and Purdue University, Lafayette, Indiana
A. Weitsman
Affiliation:
Imperial College, London S. W. 7 and Purdue University, Lafayette, Indiana

Extract

Let

be regular in U = {|z| < 1}. Suppose that the values of f(z) all lie in a domain D in the w-plane. If certain geometrical restrictions are made on D we can deduce growth conditions on the maximum modulus

the means

and the coefficients αn. Good bounds for M(r, f) have been obtained under various conditions on D.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baernstein, A. II. Some extremal problems for univalent functions, harmonic measures and subharmonic functions, Symposium on Complex Analysis, Canterbury, 1973. London Math. Soc. Lecture Note Series 12, Cambridge University Press 1974, 1115.Google Scholar
(2)Cartwright, M. L.Some inequalities in the theory of functions. Math. Ann. 3 (1935), 98118.CrossRefGoogle Scholar
(3)Duren, P. L.The theory of Hp-spaces (Academic Press, 1970).Google Scholar
(4)Hayman, W. K.Inequalities in the theory of functions. Proc. London Math. Soc. 51 (1949), 450473.CrossRefGoogle Scholar
(5)Hayman, W. K.Some applications of the transfinite diameter to the theory of functions. J. Analyse Math. 1 (1951), 155179.CrossRefGoogle Scholar
(6)Hayman, W. K. & Nicholis, P. J.On the minimum modulus of functions with given coefficients. Bull. London Math. Soc. 5 (1973), 295301.CrossRefGoogle Scholar
(7)Nevanlinna, R.Eindeutige analytische Funktionen (Springer 1936).CrossRefGoogle Scholar
(8)Pommerenke, C.On Bloch functions. J. London Math. Soc. 2 (1970), 689695.CrossRefGoogle Scholar
(9)Pommerenke, C.On the growth of the coefficients of analytic functions. J. London Math. Soc. 5 (1972), 624628.CrossRefGoogle Scholar
(10)Tsuji, M.Potential theory in modern function theory (Maruzen, 1959).Google Scholar