No CrossRef data available.
Article contents
Additivity and superadditivity in Lp-spaces
Published online by Cambridge University Press: 24 October 2008
Abstract
A simple proof is given that if X is a normed vector lattice, 1 ≼ p ≼ ∞, and the norm in X is p-additive, then the norm is p-superadditive if p < ∞. If p = ∞, then X satisfies Kakutani's classical M-space condition. The proof uses duality but is otherwise elementary.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 100 , Issue 1 , July 1986 , pp. 133 - 136
- Copyright
- Copyright © Cambridge Philosophical Society 1986
References
REFERENCES
[1]Bernau, S. J.. A note on (M)-spaces. J. London Math. Soc. 39 (1964), 541–543.CrossRefGoogle Scholar
[3]Bohnenblust, H. F. and Kakutani, S.. Concrete representation of (M)-spaces. Ann. Math. (2) 42 (1941), 1025–1028.CrossRefGoogle Scholar
[4]Lacey, H. Elton. The Isometric Theory of Classical Banach Spaces (Springer-Verlag, 1974).CrossRefGoogle Scholar
[5]Kakutani, S.. Concrete representation of abstract (M)-spaces. Ann. Math. (2) 42 (1941), 994–1024.CrossRefGoogle Scholar