Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T23:53:14.889Z Has data issue: false hasContentIssue false

Can partial indexings be totalized?

Published online by Cambridge University Press:  12 March 2014

Dieter Spreen*
Affiliation:
Fachbereich Mathematik, Theoretische Informatik, Universität Siegen, 57068 Siegen, Germany, E-mail: [email protected]

Abstract

In examples like the total recursive functions or the computable real numbers the canonical indexings are only partial maps. It is even impossible in these cases to find an equivalent total numbering. We consider effectively given topological T0-spaces and study the problem in which cases the canonical numberings of such spaces can be totalized, i.e., have an equivalent total indexing. Moreover, we show under very natural assumptions that such spaces can effectively and effectively homeomorphically be embedded into a totally indexed algebraic partial order that is closed under the operation of taking least upper bounds of enumerable directed subsets.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bauer, A., Birkedal, L., and Scott, D., Equilogical spaces, preprint, 1998.Google Scholar
[2]Berger, U., Totale Objekte in der Bereichstheorie, Ph.D. thesis, Universität München, 1990.Google Scholar
[3]Berger, U., Total sets and objects in domain theory, Annals of Pure and Applied Logic, vol. 60 (1993), pp. 91117.CrossRefGoogle Scholar
[4]Berger, U., Continuous functionals of dependent and transfinite types, Habilitationsschrift, Universität München, 1997.Google Scholar
[5]Birkedal, L., Carboni, A., Rosolini, G., and Scott, D., Type theory via exact categories, Proceedings of the 13th annual IEEE symposium on logic in computer science, IEEE Computer Society, 1998, pp. 188198.Google Scholar
[6]Blanck, J., Computability on topological spaces by effective domain representations, Ph.D. thesis, Uppsala University, Uppsala, 1997, Dissertations in Mathematics 7.Google Scholar
[7]Blanck, J., Domain representability of metric spaces, Annals of Pure and Applied Logic, vol. 83 (1997), pp. 225247.CrossRefGoogle Scholar
[8]Blanck, J., Domain representations of topological spaces, Theoretical Computer Science, vol. 247 (2000), pp. 229255.CrossRefGoogle Scholar
[9]Edalat, A., Domains for computation in mathematics, physics and real arithmetic, The Bulletin of Symbolic Logic, vol. 3 (1997), pp. 401452.CrossRefGoogle Scholar
[10]Edalat, A. and Heckmann, R., A computational model for metric spaces, Theoretical Computer Science, vol. 193 (1998), pp. 5373.CrossRefGoogle Scholar
[11]Engelking, R., General topology, Helderman-Verlag, Berlin, 1989.Google Scholar
[12]Eršov, Ju. L., Computable functionals offinite type, Algebra i Logika, vol. 11 (1972), pp. 367437, English translation: Algebra and Logic, vol. 11 (1972), pp. 203–242.Google Scholar
[13]Eršov, Ju. L., Continuous lattices and A-spaces, Dokl. Akad. Nauk. SSSR, vol. 207 (1972), pp. 523526, English translation: Soviet Mathematics Doklady, vol. 13 (1972), pp. 1551–1555.Google Scholar
[14]Eršov, Ju. L., The theory of A-spaces, Algebra i Logika, vol. 12 (1973), pp. 369416, English translation: Algebra and Logic, vol. 12 (1973), pp. 209–232.Google Scholar
[15]Eršov, Ju. L., Theorie der Numerierungen I, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 19 (1973), pp. 289388.CrossRefGoogle Scholar
[16]Eršov, Ju. L., Theorie der Numerierungen II, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 21 (1975), pp. 473584.CrossRefGoogle Scholar
[17]Eršov, Ju. L., Model ℂ of partial continuous functionals, Logic colloquium 76 (Gandy, R. O. and Hyland, J. M. E., editors), North-Holland, Amsterdam, 1977, pp. 455467.Google Scholar
[18]Eršov, Ju. L., Theorie der Numerierungen III, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 23 (1977), pp. 289371.Google Scholar
[19]Escardó, M.H.. PCF extended with real numbers, Theoretical Computer Science, vol. 162 (1996), pp. 79115.CrossRefGoogle Scholar
[20]Di Gianantonio, P., Real number computability and domain theory, Information and Computation, vol. 127 (1996), pp. 1125.CrossRefGoogle Scholar
[21]Gierz, G., Hofmann, K. H., Keimel, K., Lawson, D. J., Mislove, M., and Scott, D. S., A compendium on continuous lattices, Springer-Verlag, Berlin, 1980.CrossRefGoogle Scholar
[22]Girard, J. Y., The system F of variable types, fifteen years later, Theoretical Computer Science, vol. 45 (1985), pp. 159192.CrossRefGoogle Scholar
[23]Grzegorczyk, A., Computable functionals, Fundamenta Mathematicae, vol. 42 (1955), pp. 168202.CrossRefGoogle Scholar
[24]Kamimura, T. and Tang, A., Total objects of domains, Theoretical Computer Science, vol. 34 (1984), pp. 275288.CrossRefGoogle Scholar
[25]Kristiansen, L. and Normann, D., Interpreting higher computations as types with totality, Archive for Mathematical Logic, vol. 33 (1994), pp. 243253.CrossRefGoogle Scholar
[26]Kristiansen, L. and Normann, D., Semantics for some constructors of type theory, Symposia Gaussiana, Conf. A (Behara, M., Frisch, R., and Lintz, R. G., editors), de Gruyter, Berlin, 1995, pp. 201224.CrossRefGoogle Scholar
[27]Kristiansen, L. and Normann, D., Total objects in inductively defined types, Archive for Mathematical Logic, vol. 36 (1997), pp. 405436.CrossRefGoogle Scholar
[28]Lacombe, D., Quelques procédés de définitions en topologie recursif, Constructivity in mathematics (Heyting, A.. editor), North-Holland, Amsterdam, 1959, pp. 129158.Google Scholar
[29]Lawson, J., Spaces of maximal points, Mathematical Structures in Computer Science, vol. 7 (1997), pp. 543555.CrossRefGoogle Scholar
[30]Lawson, J., Computation on metric spaces via domain theory, Topology audits Applications, vol. 85 (1998), pp. 247263.CrossRefGoogle Scholar
[31]Mal'cev, A. I., The metamathematics of algebraic systems, collected papers: 1936-–1967, (Wells, B. F. III editor), North-Holland, Amsterdam, 1971.Google Scholar
[32]Martin-Löf, P., Notes on constructive mathematics, Almquist and Wiksell, Stockholm, 1970.Google Scholar
[33]Moschovakis, Y. N.. Recursive analysis, Ph.D. thesis, University of Wisconsin, Madison, Wisconsin, 1963.Google Scholar
[34]Normann, D., Formalizing the notion of total information, Mathematical logic (Petkov, P. P., editor), Plenum Press, New York, 1990, pp. 6794.CrossRefGoogle Scholar
[35]Normann, D., A hierarchy of domains with totality, but without density, Computability, enumerahility, unsolvability (Cooper, S. B., Slaman, T. A., and Wainer, S. S., editors), Cambridge University Press, 1996, pp. 233257.CrossRefGoogle Scholar
[36]Normann, D., Closing the gap between the continuous functionals and recursion in 3E, Archive for Mathematical Logic, vol. 36 (1997), pp. 269287.CrossRefGoogle Scholar
[37]Normann, D., The continuous functionals of finite types over the reals, Preprint Series, no. 19. Matematisk Institutt, Universitetet i Oslo, 1998.Google Scholar
[38]Odifreddi, P., Classical recursion theory, North-Holland, Amsterdam, 1989.Google Scholar
[39]Pour-El, M. B. and Richards, J. I., Computability in analysis and physics, Springer-Verlag, Berlin, 1989.CrossRefGoogle Scholar
[40]Rice, H. G., Recursive real numbers, Proceedings of the American Mathematical Society, vol. 5 (1954), pp. 794–791.CrossRefGoogle Scholar
[41]Robinson, R. M., Review of “R. Péter, ‘Rekursive Funktionen’, Akadémiai Kiado, Budapest, 1951”, this Journal, vol. 16 (1951), p. 280.Google Scholar
[42]Rogers, H. Jr, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar
[43]Scott, D., A new category?, unpublished manuscript, available at the following address http://www.cs.emu.edu/Groups/LTC/.Google Scholar
[44]Scott, D., Outlines of a mathematical theory of computation, Proceedings of the 4th annual Princeton conference on information sciences and systems, 1970, pp. 169176.Google Scholar
[45]Scott, D., Lectures on a mathematical theory of computation, Technical Monograph PRG-19, Oxford University Computing Laboratory, 1981.Google Scholar
[46]Smyth, M. B., Power domains and predicate transformers, Automata, languages and programming (Diaz, J., editor), Lecture Notes in Computer Science, no. 154, Springer-Verlag, Berlin, 1983, pp. 662675.CrossRefGoogle Scholar
[47]Spreen, D., Representations versus numberings: on the relationship of two computability notions, Theoretical Computer Science, to appear.Google Scholar
[48]Spreen, D., On some decision problems in programming, Information and Computation, vol. 122 (1995), pp. 120139, corrections D. Spreen, On some decision problems in programming, Information and Computation, vol. 148 (1999), pp. 241–244.CrossRefGoogle Scholar
[49]Spreen, D., Effective inseparability in a topological setting, Annals of Pure and Applied Logic, vol. 80 (1996), pp. 257275.CrossRefGoogle Scholar
[50]Spreen, D., On effective topological spaces, this Journal, vol. 63 (1998), pp. 185221.Google Scholar
[51]Stoltenberg-Hansen, V. and Tucker, J. V., Complete local rings as domains, this Journal, vol. 53 (1988), pp. 603624.Google Scholar
[52]Stoltenberg-Hansen, V. and Tucker, J. V., Algebraic and fixed point equations over inverse limits of algebras, Theoretical Computer Science, vol. 87 (1991), pp. 124.CrossRefGoogle Scholar
[53]Stoltenberg-Hansen, V. and Tucker, J. V., Effective algebras, Handbook of logic in computer science (Abramsky, S., Gabbay, D. M., and Maibaum, T. S. E., editors), vol. 4, Clarendon Press, Oxford, 1995, pp. 357526.CrossRefGoogle Scholar
[54]Sturm, C.-F., Mémoire sur la résolution des équations numeriques, Annales de mathématiques pures et appliquées, vol. 6 (1835), pp. 271318.Google Scholar
[55]Turing, A. M., On computable numbers with an application to the entscheidungsproblem, Proceedings of the London Mathematical Society, vol. 42 (1936), pp. 230265, corrections A. M. Turing, On computable numbers with an application to the entscheidungsproblem, Proceedings of the London Mathematical Society, vol. 43 (1937), pp. 544–546.Google Scholar
[56]Waagbø, G., Denotational semantics for intuitionistic type theory using a hierarchy of domains with totality, Archive for Mathematical Logic, vol. 38 (1999), pp. 1960.Google Scholar
[57]Weihrauch, K., Computability, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar
[58]Weihrauch, K. and Deil, T., Berechenbarkeit auf cpo's, Schriften zur Angewandten Mathematik und Informatik, no. 63, Rheinisch-Westfälische Technische Hochschule Aachen, 1980.Google Scholar
[59]Weihrauch, K. and Schreiber, U., Embedding metric spaces into cpo's, Theoretical Computer Science, vol. 16 (1981), pp. 524.CrossRefGoogle Scholar