The thermal instability of a compressible plasma in a porous medium is considered in the presence of a uniform vertical magnetic field to include the Hall-current and finite-Larmor-radius effects. The system is found to be stable for (cp/g) β < 1, where cp, β and g are the specific heat at constant-pressure, the uniform adverse temperature gradient and the acceleration due to gravity respectively. The uniform vertical magnetic field, Hall-current and finite. Laimor-radius effects introduce oscillatory modes in the system for (cp/g) β ≤ 1, which were non-existent in their absence. The Hall current and finite Larmor radius (FLR) individually have destabilizing and stabilizing effects respectively on the system. In their simultaneous presence there is competition between the destabilizing role of the Hall current and the stabilizing role of the FLR, and each succeeds in stabilizing a certain wavenumber range. In the absence of a magnetic field (and hence the absence of an FLR and Hall current), the destabilizing effect of medium permeability is seen, but in the presence of a magnetic field (and hence the presence of an FLR and Hall current), the medium permeability may have a stabilizing or a destabilizing effect on the thermal instability of the plasma. The effect of compressibility is found to postpone the onset of thermal instability in plasma.