Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T00:52:31.906Z Has data issue: false hasContentIssue false

Electromagnetic ion-beam instabilities in a cold plasma

Published online by Cambridge University Press:  13 March 2009

G. Gnavi
Affiliation:
Instituto de Física del Plasma, Consejo Nacional de Investigaciones Científicas y Técnicas, and Departmento de Física, Universidad de Buenos Aires, Faculated de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. 1, 1428, Buenos Aires, Argentina
L. Gomberoff
Affiliation:
Departamento de Física, Facultad cle Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
F. T. Gratton
Affiliation:
Instituto de Física del Plasma, Consejo Nacional de Investigaciones Científicas y Técnicas, and Departmento de Física, Universidad de Buenos Aires, Faculated de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. 1, 1428, Buenos Aires, Argentina
R. M. O. Galvão
Affiliation:
Instituto cle Física, Universidad cle São Paulo, CP 20516, São Paulo, Brasil

Abstract

We study the stability of the cold-plasma dispersion relation for circularly polarized waves in a plasma composed of an ion background and an ion beam. The presence of the beam introduces a resonant branch into the dispersion relation for right-hand-polarized waves propagating in the direction of the external magnetic field, which, for V>Vφ, has negative energy (here V is the beam velocityVφ is the wave phase velocity). Therefore this branch may give rise to explosive instabilities when the waves experience parametric decays. It is shown graphically that resonant right-hand-polarized and non-resonant left-hand-polarized waves, propagating parallel to the external magnetic field, can be unstable. It is also shown that the instability region can extend to large frequencies and wavenumnbers, and that the instability regions have a band structure. The parametric dependence of instability thresholds and marginal modes is also studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic Press, New York.Google Scholar
Gary, S. P. 1991 Space Sci. Rev. 56, 373.CrossRefGoogle Scholar
Gary, S. P., Smith, C. W., Lee, M. A., Goldstein, M. L. & Forslund, D. W. 1984 Phys. Fluids 27. 1852.CrossRefGoogle Scholar
Gomberoff, L. 1992 IEEE Trans. Plasma Sci. 20, 843.CrossRefGoogle Scholar
Gomberoff, L. & Elgueta, R. 1991 J. Geophys. Res. 9801.CrossRefGoogle Scholar
Gomberoff, L. & Hernández, R. 1992 J. Geophys. Res. 97, 12113.CrossRefGoogle Scholar
Gomberoff, L. & Neira, R. 1983 J. Geophys. Res. 88, 2710.Google Scholar
Gomberoff, L., Gratton, F. T. & Gnavi, G. 1994 J. Geophys. Res. 99, 14717.CrossRefGoogle Scholar
Heidbrink, W. W., Strait, E. J., Doyle, E., Sager, G. & Snider, R. T. 1991 Nucl. Fusion 31, 1635.CrossRefGoogle Scholar
HollwegEsser, J. V. Esser, J. V., Esse, R. & Jayanti, V. 1993 J. Geophys. Res. 98, 3491.CrossRefGoogle Scholar
Isenberg, P. A. 1984 J. Geophys. Res. 89, 2133.CrossRefGoogle Scholar
Kozyra, J. U., Cravens, T. E., Nagy, A. F. & Fontheim, E. G. 1984 J. Geophys. Res. 89, 2217.CrossRefGoogle Scholar
Leubner, M. P. 1978 J. Geophys. Res. 83, 3900.CrossRefGoogle Scholar
Marsch, E. 1991 Kinetic physics of the solar wind. Physics and Chemistry in Space and Solar Physics, Physics of the Inner Heliosphere II (ed. Shwenn, R. & Marsch, E.), p. 45. Springer-Verlag, Heidelberg.Google Scholar
Oraevsky, V. N. 1984 Handbook of Plasma Physics, Vol. 2: Basic Plasma Physics II (ed. Galeev, A. A. & Sudan, R. N.). Elsevier, Amsterdam.Google Scholar
Strait, E. J., Heidbrink, W. W., Turnbull, A. D., Chu, M. S. & Duong, H. H. 1993 Nucl. Fusion, 33, 1849.CrossRefGoogle Scholar
Winske, D. & Leroy, M. M. 1984 J. Geophys. Res. 89, 2673.CrossRefGoogle Scholar