No CrossRef data available.
Published online by Cambridge University Press: 13 March 2009
The warm-fluid equation derived from the drift kinetic equation is solved numerically to investigate the electrostatic low-frequency stability of an electron ribbon beam drifting in the crossed-fields of a planar magnetron. The temperature effect is manifested only for oblique propagation with respect to the drifting beam direction. The dispersion relation takes the form ω = ω(k⊥/ks∥) = ω(ks∥/k⊥), where k⊥ and k⊥ are respectively the components of the surface wave vector k parallel and perpendicular to the magnetic field. The obliqueness of the propagation direction and the non-zero temperature give rise to a resonant instability, in addition to the diocotron instability, and the wavenumber corresponding to the maximum diocotron growth rate shifts as the temperature changes.