The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results.