Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T13:13:49.705Z Has data issue: false hasContentIssue false

Dynamics of collisional particles in a fluctuating magnetic field

Published online by Cambridge University Press:  13 March 2009

F. Spineanu
Affiliation:
Association EURATOM-Etat Beige stir la Fusion, Physique Statistique et Plasmas, CP 231, Université Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, 1050 Bruxelles, Belgium, and Association EURATOM-CEA sur la Fusion, DRFC, Centre d'Etudes de Cadarache, 13108 Saint-Paul-Iez-Durance Cedex, France
M. Vlad
Affiliation:
Association EURATOM-Etat Beige stir la Fusion, Physique Statistique et Plasmas, CP 231, Université Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, 1050 Bruxelles, Belgium, and Association EURATOM-CEA sur la Fusion, DRFC, Centre d'Etudes de Cadarache, 13108 Saint-Paul-Iez-Durance Cedex, France

Abstract

The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amit, D. J. 1984 Field Theory, the Renormalization Group and Critical Phenomena. World Scientific, Singapore.Google Scholar
Balescu, R. 1988 Transport Processes in Plasmas, Vol. 1. North-Holland, Amsterdam.Google Scholar
Balescu, R., Wang, H. D. & Misguich, J. H. 1994 Langevin equation versus kinetic equation: subdiffusive behavior of charged particles in a stochastic magnetic field. Phys. Plasmas 1 38263842.CrossRefGoogle Scholar
Corrsin, S. 1959 Atmospheric Diffusion and Air Pollution (ed. Frenkiel, F. N & Shepard, P. A), p. 161. Academic Press, New York.Google Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1979 Electron heat conductivity of the plasma across a ‘braided’ magnetic field. Proceedings of 7th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Innsbruck, 1978, Vol. 1, pp. 649663. International Atomic Energy Agency, Vienna.Google Scholar
Krommes, J. A., Oberman, C. & Kleva, R. G. 1983 Plasma transport in stochastic magnetic fields. Part 3. Kinetics of test particle diffusion. J. Plasma Phys. 30, 1156.CrossRefGoogle Scholar
Laval, G. 1993 Particle diffusion in stochastic magnetic fields. Phys. Fluids B 5, 711721.CrossRefGoogle Scholar
Liewer, P. C. 1985 Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport. Nucl. Fusion 25, 543621.CrossRefGoogle Scholar
McComb, W. D. 1990 The Physics of Fluid Turbulence. Clarendon Press, Oxford.CrossRefGoogle Scholar
Rax, J. M. & White, R. B. 1991 Effective diffusion and nonlocal heat transport in a stochastic magnetic field. Phys. Rev. Lett. 68, 15231526.CrossRefGoogle Scholar
Rechester, A. B. & Rosenbluth, M. N. 1978 Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 3841.CrossRefGoogle Scholar
Spineanu, F., Vlad, M. & Misguich, J. H. 1994 Non-diffusive corrections to the long-scale behaviour of ensembles of turbulent magnetic lines: application of the functional method. J. Plasma Phys. 51, 113138.CrossRefGoogle Scholar