Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T13:06:32.428Z Has data issue: false hasContentIssue false

Kinetic theory of very high-frequency and high-pressure continuous atomic discharges

Published online by Cambridge University Press:  13 March 2009

N. Peyraud-Cuenca
Affiliation:
URA 1362 du CNRS, Observatoire de la Côte d'Azur, BP 229, F-06304 Nice Cedex 4, France
P. Faucher
Affiliation:
URA 1362 du CNRS, Observatoire de la Côte d'Azur, BP 229, F-06304 Nice Cedex 4, France

Abstract

We derive the analytical solution of the Boltzmann equation for the stationary electron distribution function that is reached in a plasma generated on the application of a uniform very high-frequency electric field in an atomic gas. The theory includes all excitation transitions: ionization and electronic transitions. The analytic solution is also extended to continuous discharges with low electric field or high pressure in the gas. Then the electron rate coefficient for excitation of the first state (which is the most significant) is calculated analytically. We apply the results to the modelling of very high-frequency argon discharges and to high-pressure continuous discharges in argon and in sodium. The results are compared with numerical results of Ferreira and co-workers for argon and of LaVerne for sodium: in both cases we find good agreement between numerical and analytical approaches.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions. Dover, New York.Google Scholar
Bates, D. R. 1962 Atomic and Molecular Processes. Academic Press, London.Google Scholar
Druyvesteyn, M. J. & Penning, F. M. 1940 Rev. Mod. Phys. 12, 87.CrossRefGoogle Scholar
Eggarter, E. 1975 J. Chem. Phys. 62, 833.CrossRefGoogle Scholar
Ferreira, C. M. & Loureiro, J. 1983 J. Phys. D 16, 2471.Google Scholar
Ferreira, C. M. & Ricard, A. 1983 J. Appl. Phys. 54, 2261.CrossRefGoogle Scholar
Fite, W. L. & Brackmann, R. T. 1958 Phys. Rev. 112, 1151.CrossRefGoogle Scholar
Jacob, J. H. & Mangano, J. A. 1976 Appl. Phys. Lett. 29, 467.CrossRefGoogle Scholar
Kasdan, A., Miller, T. M. & Bederson, B. 1973 Phys. Rev. A 8, 1562.CrossRefGoogle Scholar
LaVerne, A. S. 1976 J. Appl. Phys. 47, 1397.Google Scholar
Percival, I. C. 1966 Nucl. Fusion 6, 182.CrossRefGoogle Scholar
Peyraud, N. 1984 J. Plasma Phys. 32, 35.CrossRefGoogle Scholar
Peyraud-Cuenca, N. 1992 Astron. Astrophys. 261, 633.Google Scholar
Rockwood, S. D. 1973 Phys. Rev. A 8, 2348.CrossRefGoogle Scholar
Rockwood, S. D., Brau, J. E., Proctor, W. A. & Canavan, G. H. 1973 IEEE J. Quantum Electron. 9, 120.CrossRefGoogle Scholar
Tawara, H., Kato, T. & Ohnishi, M. 1985 Ionization Cross-Sections of Atoms and Ions by Electron Impact. Institute of Plasma Physics, Nagoya University.Google Scholar