With the aim of identifying effective dispersants that would yield stable, high solids loading (≥60 vol.%) suspensions of oxides, carbides, or nitrides in nonaqueous carriers such as paraffinic oils, a number of dispersants were evaluated, using in most cases A16SG grade alumina from Alcoa as the filler. Among those evaluated were some common dispersants, such as menhaden fish oil and oleic acid, and commercial dispersants not commonly used in ceramic processing, such as polymeric fatty esters and petroleum sulfonates. More importantly, a few dispersants were synthesized and evaluated. The latter dispersants contained straight or cyclic (benzenic) side chains located far from the head group on 18 carbon main-chain fatty acid molecules. Among these, the dispersants with a 5–10 carbon side chain or with a benzenic side chain yielded very fluid suspensions (≥60 vol.%) compared to those with long polymeric or oligomeric side chains, or with no side chains, or the commercial dispersants; in some cases, for the same solid loading, the suspension viscosities were an order of magnitude lower with the synthesized side chain dispersants. These results indicate that molecules with an optimum side chain length located sufficiently far from the head group and an optimum backbone (main chain) constitute the most effective dispersants for concentrated suspensions. By combining the advantages provided by wider particle size distributions and by these effective dispersants, suspensions highly concentrated (up to 74 vol.%), and yet processable and “flowing” paste-like have been prepared.