High-density ceramic materials from nanosize ceramic powders were produced by high pressure under nearly hydrostatic environment up to 5.6 GPa, on a special configuration in a toroidal-type apparatus, at room temperature. Attempts to use a common solid pressure transmitting medium, as NaCl, resulted in cracked samples. Lead and indium, which have an extremely low shear strength, proved to be the suitable choices as a pressure-transmitting medium to compact these ceramic materials, in order to obtain high-density samples. Transparent amorphous SiO2-gel and translucent γ−Al2O3 samples, in bulk, with volumes about 40 mm3, hard and crack-free were obtained. Densities over 90% of full density for the γ−Al2O3 samples and over 80% for the compacted SiO2-gel samples were obtained. In addition, from the density-pressure curve, the yield strength (σ) for γ−Al2O3 was estimated, for the first time, as 2.6 GPa. Vickers microhardness values were in the range of 5.7 GPa for the γ−Al2O3 samples, and 4.0 GPa for the SiO2-gel samples, under loads of 50 g. An important and practical application of these results is the possibility of producing bulk γ−Al2O3, a new alumina material, which was not possible to prepare before due to the conversion to a phase during the normal sintering process. Additionally, specially for SiO2-gel, a very important application of this study is the possibility of incorporation of organic substances in an inorganic matrix, using high pressure at room temperature.