The general properties of snow are described with a view to engineering applications of data. Following an introduction and a short note on the origins of snow, data are given for fall velocities of snow particles, and for mass flux and particle concentrations in falling snow and blowing snow. Notes on the structural properties of deposited snow cover grain size, grain bonds, bulk density, overburden pressure, and permeability. A section on impurities deals with stable and radioactive isotopes, chemical impurities, insoluble particles, living organisms, acidity, and gases. Mechanical properties are treated only selectively, and the reader is referred to another paper for comprehensive coverage. The selective treatment deals with stress waves and strain waves, compressibility, effects of volumetric strain on deviatoric strain, and specific energy for comminution. The section on thermal properties covers heat capacity, latent heat, conductivity, diffusivity, heat transfer by vapor diffusion, heat transfer and vapor transport with forced convection, and thermal strain. The section on electrical properties opens with a brief discussion on dielectric properties of ice, and proceeds to a summary of the dielectric properties of snow, including dielectric dispersion, permittivity, dielectric loss, and d.c. conductivity. There are also notes on the thermoelectric effect and on electrical charges in falling and blowing snow. The section on optical properties deals with transmission and attenuation of visible radiation, with spectral reflectance, and with long-wave emissivity. The review concludes with some comments on engineering problems that involve snow, and the requirements for research and development.