In this paper an exact solution is presented for the problem of unsteady laminar convective flow under a pressure gradient along a vertical pipe. We have obtained the solution of the problem on the basis of the assumption that the velocity and buoyancy profiles far from the pipe entrance do not change with the height, and the entry lengths have been ignored. The wall of the pipe is heated or cooled uniformly. We have discussed both the cases, when buoyancy forces act together with the pressure gradient or in opposite direction.
In the case when the upflow is heated (or a downflow is cooled) the velocity and thermal boundary layers are formed for sufficiently large Rayleigh numbers. In the second case which has been discussed in detail (when the upflow is cooled or the downflow is heated) we have found the critical value of the Rayleigh number R = R, beyond which the velocity profile and the temperature profile become unsteady and turbulent in all the cases. In the case of the elliptical cylinder R, increases up to 1730 as the ellipticity is increased while in the case of the co-axial pipes this Rayleigh number increases as the gap c between the cylinders is decreased (if c = a/b = 1·2 then R, = 60762, but decreases to 1 when c = 4). Besides this, the time required to reach steady state increases as the Rayleigh number increases in both circular and elliptical pipes; it also increases when the eccentricity is decreased. The cases discussed by Morton (1960 and Dalip Singh (1965 are particular cases of the results derived below.
In this investigation we have dealt with the following ducts: (i) circular tubes, (ii) elliptical tubes and (iii) co-axial tubes. The general solutions for both velocity and temperature fields have been found for the case when the pressure gradient is an arbitrary function of time, with an arbitrary heat source also present. Particular cases when both the parameters are absohte constants have been discussed in detail.
We have made use of finite transforms very frequently; especially for the case of an elliptical tube, a new transform involving Mathieu functions developed by Gupta (1964 has been used. A few new infinite series have been summed with the help of this transform.
Various non-dimensional quantities (for both the cylinders) such as the Nusselt number, volume flux and rate of heat transfer have been found when the pressure gradient and source of heat generation are absolute constants.