Hostname: page-component-f554764f5-nqxm9 Total loading time: 0 Render date: 2025-04-10T17:46:29.212Z Has data issue: false hasContentIssue false

Lifetime characterisation of extreme wave localisations in crossing seas

Published online by Cambridge University Press:  26 March 2025

Y. He
Affiliation:
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
J. Wang*
Affiliation:
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, PR China
J. He
Affiliation:
Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
Y. Li
Affiliation:
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong Department of Civil and Mechanical Engineering, Technical University of Denmark, Kongens-Lyngby 2800, Denmark School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
X. Feng
Affiliation:
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
A. Chabchoub
Affiliation:
Marine Physics and Engineering Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563, Japan Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
*
Corresponding author: J. Wang, [email protected]

Abstract

Rogue waves (RWs) can form on the ocean surface due to the well-known quasi-four-wave resonant interaction or superposition principle. The first is known as the nonlinear focusing mechanism and leads to an increased probability of RWs when unidirectionality and narrowband energy of the wave field are satisfied. This work delves into the dynamics of extreme wave focusing in crossing seas, revealing a distinct type of nonlinear RWs, characterised by a decisive longevity compared with those generated by the dispersive focusing (superposition) mechanism. In fact, through fully nonlinear hydrodynamic numerical simulations, we show that the interactions between two crossing unidirectional wave beams can trigger fully localised and robust development of RWs. These coherent structures, characterised by a typical spectral broadening then spreading in the form of dual bimodality and recurrent wave group focusing, not only defy the weakening expectation of quasi-four-wave resonant interaction in directionally spreading wave fields, but also differ from classical focusing mechanisms already mentioned. This has been determined following a rigorous lifespan-based statistical analysis of extreme wave events in our fully nonlinear simulations. Utilising the coupled nonlinear Schrödinger framework, we also show that such intrinsic focusing dynamics can be captured by weakly nonlinear wave evolution equations. This opens new research avenues for further explorations of these complex and intriguing wave phenomena in hydrodynamics as well as other nonlinear and dispersive multi-wave systems.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akhmediev, N., Ankiewicz, A. & Taki, M. 2009 Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373 (6), 675678.CrossRefGoogle Scholar
Akhmediev, N., Eleonskii, V. & Kulagin, N. 1985 Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. JETP 62 (5), 894899.Google Scholar
Arthur, D. et al. 2007 k-means++: the advantages of careful seeding. In Soda, vol. 7, pp. 10271035.Google Scholar
Benetazzo, A., Ardhuin, F., Bergamasco, F., Cavaleri, L., Guimaraes, P.V., Schwendeman, M., Sclavo, M., Thomson, J. & Torsello, A. 2017 On the shape and likelihood of oceanic rogue waves. Sci. Rep-UK. 7 (1), 8276.CrossRefGoogle ScholarPubMed
Benjamin, T. & Feir, J.E. 1967 The disintegration of wave trains on deep water part 1. theory. J. Fluid Mech. 27 (3), 417430.CrossRefGoogle Scholar
Birkholz, S., Brée, C., Veselić, I., Demircan, A. & Steinmeyer, G. 2016 Ocean rogue waves and their phase space dynamics in the limit of a linear interference model. Sci. Rep-UK. 6 (1), 35207.CrossRefGoogle ScholarPubMed
Bitner-Gregersen, E.M. & Toffoli, A. 2014 Occurrence of rogue sea states and consequences for marine structures. Ocean Dyn. 64 (10), 14571468.CrossRefGoogle Scholar
Bonnefoy, F., Haudin, F., Michel, G., Semin, B., Humbert, T., Aumaître, S., Berhanu, M. & Falcon, E. 2016 Observation of resonant interactions among surface gravity waves. J. Fluid Mech. 805, R3.CrossRefGoogle Scholar
Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. A. 1987 Spectral methods in fluid dynamics springer-verlag.CrossRefGoogle Scholar
Cavaleri, L., Bertotti, L., Torrisi, L., Bitner-Gregersen, E., Serio, M. & Onorato, M. 2012 Rogue waves in crossing seas: the louis majesty accident. J. Geophys. Res.: Oceans 117, C00J10.Google Scholar
Chabchoub, A., Akhmediev, N. & Hoffmann, N. 2012 Experimental study of spatiotemporally localized surface gravity water waves. Phys. Rev. E 86 (1), 016311.CrossRefGoogle ScholarPubMed
Chabchoub, A., Hoffmann, N. & Akhmediev, N. 2011 Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106 (20), 204502.CrossRefGoogle Scholar
Chabchoub, A. et al. 2019 Directional soliton and breather beams. Proc. Natl Acad. Sci. USA 116 (20), 97599763.CrossRefGoogle ScholarPubMed
Clamond, D., Fructus, D. & Grue, J. 2007 A note on time integrators in water-wave simulations. J. Engng Math. 58 (1-4), 149156.CrossRefGoogle Scholar
Clamond, D., Fructus, D., Grue, J. & Kristiansen, Ø. 2005 An efficient model for three-dimensional surface wave simulations. Part II: generation and absorption. J. Comput. Phys. 205 (2), 686705.CrossRefGoogle Scholar
Cremonini, G., De Leo, F., Stocchino, A., & Besio, G. 2021 On the selection of time-varying scenarios of wind and ocean waves: methodologies and applications in the north tyrrhenian sea. Ocean Model. 163, 101819.CrossRefGoogle Scholar
Davey, A. & Stewartson, K. 1974 On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A. Math. Phys. Sci. 338 (1613), 101110,Google Scholar
Dommermuth, D.G. & Yue, D.K. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.CrossRefGoogle Scholar
Ducrozet, G., Bonnefoy, F., Mori, N., Fink, M. & Chabchoub, A. 2020 Experimental reconstruction of extreme sea waves by time reversal principle. J. Fluid Mech. 884, A20.Google Scholar
Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A. & Dias, F. 2019 Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1 (11), 675689.CrossRefGoogle Scholar
Fedele, F., Brennan, J., Ponce de León, S., Dudley, J., & Dias, F. 2016 Real world ocean rogue waves explained without the modulational instability. Sci. Rep-UK. 6 (1), 27715.CrossRefGoogle ScholarPubMed
Fructus, D., Clamond, D., Grue, J. & Kristiansen, Ø. 2005 a An efficient model for three-dimensional surface wave simulations: part i: free space problems. J. Cmput. Phys. 205 (2), 665685.CrossRefGoogle Scholar
Fructus, D., Kharif, C., Francius, M., Kristiansen, Ø., Clamond, D. & Grue, J. 2005 b Dynamics of crescent water wave patterns. J. Fluid Mech. 537, 155186.CrossRefGoogle Scholar
Goda, Y. 2010 Random Seas and Design of Maritime Structures. World Scientific.CrossRefGoogle Scholar
Gramstad, O., Bitner-Gregersen, E., Trulsen, K., Borge, N. & Carlos, J. 2018 Modulational instability and rogue waves in crossing sea states. J. Phys. Oceanogr. 48 (6), 13171331.CrossRefGoogle Scholar
Gramstad, O. & Trulsen, K. 2011 Fourth-order coupled nonlinear Schrödinger equations for gravity waves on deep water. Phys. Fluids 23 (6), 062102.Google Scholar
Grönlund, A., Eliasson, B. & Marklund, M. 2009 Evolution of rogue waves in interacting wave systems. Europhys. Lett. 86 (2), 24001.Google Scholar
Guimarães, P. V., Ardhuin, F., Bergamasco, F., Leckler, F., Filipot, J.-F., Shim, J.-S., Dulov, V. & Benetazzo, A. 2020 A data set of sea surface stereo images to resolve space-time wave fields. Sci. Data 7 (1), 145.Google ScholarPubMed
Guo, L., He, J., Wang, L., Cheng, Y., Frantzeskakis, D., Van den Bremer, T. & Kevrekidis, P. 2020 Two-dimensional rogue waves on zero background in a Benney-Roskes model. Phys. Rev. Res. 2 (3), 033376.CrossRefGoogle Scholar
Häfner, D., Gemmrich, J. & Jochum, M. 2021 Real-world rogue wave probabilities. Sci. Rep-UK. 11 (1), 10084.CrossRefGoogle ScholarPubMed
Häfner, D., Gemmrich, J. & Jochum, M. 2023 Machine-guided discovery of a real-world rogue wave model. Proc. Natl Acad. Sci. USA 120 (48), e2306275120.CrossRefGoogle ScholarPubMed
Hasselmann, K., et al. 1973 Measurements of wind-wave growth and swell decay during the joint north sea wave project (jonswap). Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A. Deutsches Hydrographisches Institut.Google Scholar
He, Y., Ducrozet, G., Hoffmann, N., Dudley, J.M., & Chabchoub, A. 2022 a Gaalilean-transformed solitons and supercontinuum generation in dispersive media. Physica D: Nonlinear Phenom. 439, 133342.CrossRefGoogle Scholar
He, Y., Slunyaev, A., Mori, N., & Chabchoub, A. 2022 b Experimental evidence of nonlinear focusing in standing water waves. Phys. Rev. Lett. 129 (14), 144502.Google ScholarPubMed
He, Y., Witt, A., Trillo, S., Chabchoub, A., & Hoffmann, N. 2022 c Extreme wave excitation from localized phase-shift perturbations. Phys. Rev. E 106 (4), L043101.CrossRefGoogle ScholarPubMed
Janssen, P.A. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P.A. & Bidlot, J.-R. 2009 On the extension of the freak wave warning system and its verification. ECMWF Technical Memoranda 588, 42.Google Scholar
Kharif, C., Pelinovsky, E. & Slunyaev, A. 2008 Rogue Waves in the Ocean. Springer Science & Business Media.Google Scholar
Klahn, M., Zhai, Y. & Fuhrman, D.R. 2024 Heavy tails and probability density functions to any nonlinear order for the surface elevation in irregular seas. J. Fluid Mech. 985, A35.CrossRefGoogle Scholar
Kokorina, A. & Slunyaev, A. 2019 Lifetimes of rogue wave events in direct numerical simulations of deep-water irregular sea waves. Fluids 4 (2), 70.Google Scholar
Li, Y. 2021 Three-dimensional surface gravity waves of a broad bandwidth on deep water. J. Fluid Mech. 926, A34.CrossRefGoogle Scholar
Li, Y. & Chabchoub, A. 2023 On the formation of coastal rogue waves in water of variable depth. Cambridge Prisms: Coastal Futures 1, e33.Google Scholar
Liu, S., Waseda, T., Yao, J. & Zhang, X. 2022 Statistical properties of surface gravity waves and freak wave occurrence in crossing sea states. Phys. Rev. Fluids 7 (7), 074805.CrossRefGoogle Scholar
Lloyd, S. 1982 Least squares quantization in pcm. IEEE Trans. Inf. Theory 28 (2), 129137.CrossRefGoogle Scholar
Longuet-Higgins, M. 1974 Breaking waves in deep or shallow water. In Proceedings of 10th Conference on Naval Hydrodynamics, vol. 597, pp. 605, MIT.Google Scholar
Magnusson, A.K., Trulsen, K., Aarnes, O.J., Bitner-Gregersen, E.M. & Malila, M.P. 2019 three sisters” measured as a triple rogue wave group. In 38th International Conference on Ocean, Offshore and Arctic Engineering, V003T02A008. American Society of Mechanical Engineers.CrossRefGoogle Scholar
Mathis, A., Froehly, L., Toenger, S., Dias, F., Genty, G. & Dudley, J.M. 2015 Caustics and rogue waves in an optical sea. Sci. Rep-UK. 5 (1), 12822.Google Scholar
McAllister, M.L., Draycott, S., Adcock, T., Taylor, P. & Van Den Bremer, T. 2019 Laboratory recreation of the draupner wave and the role of breaking in crossing seas. J. Fluid Mech. 860, 767786.Google Scholar
Mori, N. & Janssen, P.A. 2006 On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr. 36 (7), 14711483.Google Scholar
Mori, N., Onorato, M. & Janssen, P.A. 2011 On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr. 41 (8), 14841497.CrossRefGoogle Scholar
Mori, N., Waseda, T. & Chabchoub, A. 2023 Science and Engineering of Freak Waves. Elsevier.Google Scholar
Okamura, M. 1984 Instabilities of weakly nonlinear standing gravity waves. J. Phys. Soc. Japan 53 (11), 37883796.CrossRefGoogle Scholar
Onorato, M., Osborne, A.R., & Serio, M. 2006 a Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96 (1), 014503.CrossRefGoogle Scholar
Onorato, M., Osborne, A.R., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. 2006 b Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. Eur. J. Mech. B/Fluids 25 (5), 586601.CrossRefGoogle Scholar
Onorato, M., Proment, D. & Toffoli, A. 2010 Freak waves in crossing seas. Eur. Phys. J. Special Topics 185 (1), 4555.Google Scholar
Osborne, A. 2010 Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press.Google Scholar
Osborne, A.R., & Ponce de León, S. 2017 Properties of rogue waves and the shape of the ocean wave power spectrum. In 36th International Conference on Ocean, Offshore and Arctic Engineering, pp. V03AT02A013, American Society of Mechanical Engineers.CrossRefGoogle Scholar
Peregrine, D. 1983 Water waves, nonlinear schrödinger equations and their solutions. ANZIAM J. 25 (1), 1643.Google Scholar
Qiu, D., Zhang, Y. & He, J. 2016 The rogue wave solutions of a new (2+ 1)-dimensional equation. Commun. Nonlinear Sci. 30 (1-3), 307315.CrossRefGoogle Scholar
Saffman, P. & Yuen, H.C. 1978 Stability of a plane soliton to infinitesimal two-dimensional perturbations. Phys. Fluids 21 (8), 14501451.CrossRefGoogle Scholar
Sergeeva, A. & Slunyaev, A. 2013 Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states. Nat. Hazards Earth Syst. Sci. 13 (7), 17591771.Google Scholar
Slunyaev, A. 2024 Soliton groups and extreme wave occurrence in simulated directional sea waves. Phys. Fluids 36 (7).Google Scholar
Slunyaev, A., Sergeeva, A. & Didenkulova, I. 2016 Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth. Nat. Hazards 84 (S2), 549565.Google Scholar
Steer, J.N., Borthwick, A.G., Onorato, M., Chabchoub, A., Van Den, B. & Ton, S. 2019 a Hydrodynamic x waves. Phys. Rev. Lett. 123 (18), 184501.Google ScholarPubMed
Steer, J.N., McAllister, M.L., Borthwick, A.G., Van Den, B. & Ton, S. 2019 b Experimental observation of modulational instability in crossing surface gravity wavetrains. Fluids 4 (2), 105.Google Scholar
Tang, T., Xu, W., Barratt, D., Bingham, H.B., Li, Y., Taylor, P., Van Den Bremer, T. & Adcock, T. 2021 Spatial evolution of the kurtosis of steep unidirectional random waves. J. Fluid Mech. 908, A3.CrossRefGoogle Scholar
Taylor, P. & Williams, B. 2004 Wave statistics for intermediate depth water—NewWaves and symmetry. J. Offshore Mech. Arctic Engng 126 (1), 5459.Google Scholar
Tikan, A. et al. 2022 Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral engineering. Phys. Rev. Fluids 7 (5), 054401.Google Scholar
Toffoli, A., Alberello, A., Clarke, H., Nelli, F., Benetazzo, A., Bergamasco, F., Ntamba, B.N., Vichi, M. & Onorato, M. 2024 Observations of rogue seas in the southern ocean. Phys. Rev. Lett. 132 (15), 154101.Google ScholarPubMed
Toffoli, A., Bitner-Gregersen, E., Osborne, A.R., Serio, M., Monbaliu, J. & Onorato, M. 2011 Extreme waves in random crossing seas: laboratory experiments and numerical simulations. Geophys. Res. Lett. 38 (6), L06605.CrossRefGoogle Scholar
Toffoli, A., Onorato, M., Bitner-Gregersen, E. & Monbaliu, J. 2010 Development of a bimodal structure in ocean wave spectra. J. Geophys. Res.: Oceans 115 (C3), C03006.Google Scholar
Tulin, M.P. 1996 Breaking of ocean waves and downshifting. In Waves and Nonlinear Processes in Hydrodynamics (ed. J. Grue, B. Gjevik & J.E. Weber), pp. 177190. Springer.Google Scholar
Tulin, M.P. & Waseda, T. 1999 Laboratory observations of wave group evolution, including breaking effects. J. Fluid Mech. 378, 197232.Google Scholar
Wang, J. 2025 An enhanced spectral boundary integral method for modeling highly nonlinear water waves in variable depth. J. Comput. Phys. 521 (1), 113525.Google Scholar
Wang, J. & Ma, Q. 2015 Numerical techniques on improving computational efficiency of spectral boundary integral method. Intl J. Numer. Meth. Engng 102 (10), 16381669.Google Scholar
Wang, J., Ma, Q. & Yan, S. 2018 A fully nonlinear numerical method for modeling wave–current interactions. J. Comput. Phys. 369, 173190.CrossRefGoogle Scholar
Wang, J., Ma, Q., Yan, S. & Liang, B. 2021 Modeling crossing random seas by fully non-linear numerical simulations. Front. Phys. 9, 593394.Google Scholar
Waseda, T. 2020 Nonlinear processes. In Ocean Wave Dynamics (ed. I. Young & A. Babanin), pp. 103. World Scientific.Google Scholar
Waseda, T., Kinoshita, T. & Tamura, H. 2009 Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr. 39 (3), 621639.Google Scholar
Waseda, T., Watanabe, S., Fujimoto, W., Nose, T., Kodaira, T. & Chabchoub, A. 2021 Directional coherent wave group from an assimilated non-linear wavefield. Front. Phys. 9, 622303.CrossRefGoogle Scholar
West, B.J., Brueckner, K.A., Janda, R.S., Milder, D. & Milton, R.L. 1987 A new numerical method for surface hydrodynamics. J. Geophys. Res.: Oceans 92 (C11), 1180311824.Google Scholar
Xiao, W., Liu, Y., Wu, G. & Yue, D. K. 2013 Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech. 720, 357392.Google Scholar
Yang, J. 2010 Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM.CrossRefGoogle Scholar
Zakharov, V.E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.Google Scholar
Zheng, Z., Li, Y. & Ellingsen, S.Å. 2024 Dispersive wave focusing on a shear current: part – nonlinear effects. Water Waves 6 (2), 413449.Google Scholar