
J. Fluid Mech. (2025), vol. 1008, A3, doi:10.1017/jfm.2025.155

Lifetime characterisation of extreme wave
localisations in crossing seas

Y. He
1,2

, J. Wang
1,3,4

, J. He
5

, Y. Li
2,3,6,7

, X. Feng
2

and
A. Chabchoub

8,9,10,11

1Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
Hong Kong
2Department of Ocean Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, PR China
3Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University,
Hong Kong
4Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, PR China
5Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
6Department of Civil and Mechanical Engineering, Technical University of Denmark, Kongens-Lyngby
2800, Denmark
7School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
8Marine Physics and Engineering Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa
904-0495, Japan
9Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563, Japan
10Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
11Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
Corresponding author: J. Wang, Jinghua.wang@outlook.com

(Received 21 May 2024; revised 7 January 2025; accepted 28 January 2025)

Rogue waves (RWs) can form on the ocean surface due to the well-known quasi-four-
wave resonant interaction or superposition principle. The first is known as the nonlinear
focusing mechanism and leads to an increased probability of RWs when unidirectionality
and narrowband energy of the wave field are satisfied. This work delves into the dynamics
of extreme wave focusing in crossing seas, revealing a distinct type of nonlinear RWs,
characterised by a decisive longevity compared with those generated by the dispersive
focusing (superposition) mechanism. In fact, through fully nonlinear hydrodynamic
numerical simulations, we show that the interactions between two crossing unidirectional
wave beams can trigger fully localised and robust development of RWs. These coherent
structures, characterised by a typical spectral broadening then spreading in the form of dual
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bimodality and recurrent wave group focusing, not only defy the weakening expectation
of quasi-four-wave resonant interaction in directionally spreading wave fields, but also
differ from classical focusing mechanisms already mentioned. This has been determined
following a rigorous lifespan-based statistical analysis of extreme wave events in our fully
nonlinear simulations. Utilising the coupled nonlinear Schrödinger framework, we also
show that such intrinsic focusing dynamics can be captured by weakly nonlinear wave
evolution equations. This opens new research avenues for further explorations of these
complex and intriguing wave phenomena in hydrodynamics as well as other nonlinear and
dispersive multi-wave systems.

Key words: surface gravity waves, nonlinear instability, computational methods

1. Introduction
Since the recording of the New Year or Draupner wave in 1995, fundamental research
related to ocean rogue wave (RW) investigation has attracted much attention in recent
decades due to its key relevance in coastal, ocean and arctic engineering applications
(Kharif et al. 2008; Osborne 2010; Ducrozet et al. 2020; Mori et al. 2023; Klahn et al.
2024; Toffoli et al. 2024). Assuming the wave being unidirectional and ignoring the
effect of bathymetry change (Li & Chabchoub 2023) and currents (Zheng et al. 2024),
the formation of RWs can be explained as a result of wave superposition (Longuet-
Higgins 1974; Fedele et al. 2016; McAllister et al. 2019; Häfner et al. 2021) or modulation
instability (MI) (Benjamin & Feir 1967; Zakharov 1968; Tulin & Waseda 1999; Chabchoub
et al. 2011; Bonnefoy et al. 2016). Both focusing mechanisms are equally important
depending on the wave conditions at play (Dudley et al. 2019; Waseda 2020). The
nonlinear mechanism in the form of MI, along with its manifestation in complex sea states
(Tulin 1996; Waseda et al. 2009; Onorato et al. 2010; Gramstad et al. 2018; Toffoli et al.
2024), has been extensively studied as a key mechanism for wave group focusing. However,
the predominance of quasi-four-wave resonant interactions for irregular ocean waves in
crossing seas with strong directional spreading is considered to be less evident compared
with unidirectional wave-field counterparts due to the violation of critical assumptions
such as unidirectionality and narrowband spectral conditions (Janssen 2003; Mori et al.
2011; Fedele et al. 2016; Tang et al. 2021; Häfner et al. 2023). On the other hand, a recent
experimental observation of nonlinear focusing dynamics in standing water waves (He
et al. 2022b) has shown that MI could still lead to notable amplifications in wave heights
for such states. Here, standing waves can be indeed considered as a simplified specific
type of crossing sea state with a crossing angle of 180◦. These findings further stress the
involved nature of nonlinear wave interactions in complex configurations.

Furthermore and in contrast to the dispersive focusing mechanism in directional wave
fields, numerical studies have postulated an increased likelihood of RW formation in
coupled two-wave systems when considering weak nonlinearity in the modelling of
crossing seas, with the limitations that both wave fields have the same peak frequency and
are narrowband (Grönlund et al. 2009; Liu et al. 2022). Notably, Liu et al. (2022) made
a successful attempt to study the crossing RW shape under varying crossing angles and
spectral shapes. This approach goes beyond traditional RW investigations, which mainly
focus on spectral evolution, exceedance probability distributions and kurtosis progression.
The latter work also highlights that the shape of freak waves is more influenced by
the crossing angle between wave components rather than the frequency or directional
spectral bandwidth. To theoretically understand such processes, the coupled nonlinear
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Schrödinger equation (CNLS) (Okamura 1984; Onorato et al. 2006a) and its higher-order
forms (Gramstad & Trulsen 2011; Gramstad et al. 2018; Li 2021) are commonly used
frameworks for the description of wave envelope interaction dynamics for crossing wave
states (Cavaleri et al. 2012). Indeed, the directional (2D + 1) NLS and CNLS frameworks
are essential in understanding the fundamental wave hydrodynamics together with the
emergence of localised and directional wave patterns, such as RWs (Chabchoub et al.
2019; Steer et al. 2019b; He et al. 2022b). However, it still remains unknown whether
the commonly used unidirectional and weakly nonlinear wave evolution equations can
sufficiently predict the occurrence of all possible ocean RWs, which can occur also
in crossing seas. For example, theoretical studies such as that of Guo et al. (2020)
based on the Davey–Stewartson equation (Davey & Stewartson 1974) underline that
directional perturbation can trigger strong localisations in time and directional space.
Fully nonlinear numerical simulations also predict the spanwise wave instability with some
success (Fructus et al. 2005b). These extreme events cannot obviously be predicted by the
classical unidirectional NLS framework with the famed breather solutions (Akhmediev
et al. 1985; Peregrine 1983; Chabchoub et al. 2011; Tikan et al. 2022). On the other hand,
the directional NLS can be modified to accommodate exact solutions of the unidirectional
and integrable NLS (Saffman & Yuen 1978; Chabchoub et al. 2019; Waseda et al. 2021)
and can describe the dynamics of modulationally unstable short-crested waves. This
also implies that MI may play an important role in wave focusing processes beyond the
unidirectionality assumption.

In fact, Onorato et al. (2006a)‘ discussed theoretically the role of MI in the wave
focusing process in directional seas within the framework of the CNLS. Such a mechanism
is active when the crossing angle between the two wave trains is below 70.53◦. For clarity,
we define the wave crossing angle β as the angle between the two crossing wave trains
with wave direction vectors (κ, ι) and (κ,−ι) (Toffoli et al. 2011), i.e. β = 2 arctan(ι/κ).
Numerical simulations solving the Euler equations using the high-order spectral method,
an integration method originally proposed by West et al. (1987) and Dommermuth & Yue
(1987), and physical wave tank experiments on crossing sea states (Toffoli et al. 2011)
further confirmed that the maximum value of kurtosis is reached when the crossing angle
is between 40◦ and 60◦, which is in agreement with the weakly nonlinear theory (Onorato
et al. 2006a). The latter has also been applied by Cavaleri et al. (2012) to investigate
the Louis Majesty cruise ship accident, which was likely caused by two almost identical
wave states crossing at an angle of 50◦, as confirmed in the respective CNLS simulations.
Furthermore, the occurrence of RWs within the crossing sea has been analysed by Bitner-
Gregersen & Toffoli (2014) from hindcast data and validated by numerical high-order
spectral method simulations, which shows that the maximum value of kurtosis is reached
when the crossing angle β = 40◦, intriguingly, regardless of the wave directional spreading
level (Bitner-Gregersen & Toffoli 2014). Independently of the valuable efforts mentioned
above, which point to the experimental challenges in the comprehensive investigation
of directional RWs, there have been limited attempts to classify directional RWs as
emerged from nonlinear simulations. We are confident that our current study adds to the
literature on bridging real ocean extreme waves with most recent RW theories, and future
experimental studies with advanced observation techniques such as stereo imaging for
ocean waves (Benetazzo et al. 2017; Guimarães et al. 2020) can further strengthen the
impact of our findings.

In particular, to address the remaining key questions as discussed above, our numerical
study, which is based on the fully nonlinear numerical framework developed by Wang et al.
(2021), reveals the existence of a novel type of nonlinear, fully localised and directional
RWs, i.e. extreme localised waves in directional space and time, which are distinct in
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their lifetime from the cases generated as a result of wave overlap. The procedure is
initiated by accounting for the slow variation of the directional wave elevation field due
to the effects of wave nonlinearity in the crossing sea state during wave data analysis,
while the crossing NewWave theory (Taylor & Williams 2004) is adopted as the linear
interference model dynamics for two generated and interfering JONSWAP sea states.
In this context, we introduce a lifetime parameter, referred to as lifespan tL S of a RW
event encompassing several consecutive RWs, which was adopted for similar purpose
in previous works (Chabchoub et al. 2012; Kokorina & Slunyaev 2019; Slunyaev 2024)
and as will be further elaborated in detail in the article. Based on the above, we reveal
that fully localised RW elevations and their characteristic directional pattern are strongly
correlated with their lifespans tL S . The longer the tL S of an extreme wave event, the more
it differs from a large-amplitude wave created by the linear interference principle (Taylor
& Williams 2004; Mathis et al. 2015; Birkholz et al. 2016; Fedele et al. 2016). At the same
time, the wave energy exhibits a dual bimodal frequency evolution trend (Toffoli et al.
2010; Osborne & Ponce de León 2017) in the frequency domain. Such a key observation is
also validated by considering a number of representative crossing angles (Liu et al. 2022),
significant wave heights and JONSWAP peakedness factors. Finally, we identify a new
type of fully localised RW envelope structure characterised by its unique long lifespan tL S
and full-spatial localisation, i.e. in the x direction, y direction, time and considering the
emergence of wave focusing recurrence. Despite having similar features to breathers, such
dynamics cannot be predicted by the classical NLS or MI formalism that are applicable
only for unidirectional waves and moderate carrier wave steepness.

The remainder of this paper is organised as follows: In § 2, the numerical methods
adopted in the current investigation are introduced, including the fully nonlinear enhanced
spectral boundary integral (ESBI) model and the weakly nonlinear CNLS framework.
Section 3 provides a unique lifetime analysis of the fully and weakly nonlinear simulation
data of crossing seas, including the spatio-temporal evolution of long-living RWs in such
states and associated statistical analysis. Note that in § 3.1 and 3.2, only fully nonlinear
numerical data are used for analysis, while in § 3.3 we compare the fully and weakly
nonlinear numerical results to validate the key role of MI (Onorato et al. 2006b) in a
more subtle approach. The emerging directional structures of the long-living directional
RW envelopes at the respective maxima are also revealed in this section using the CNLS
framework. The results are summarised and discussed in § 4.

2. Numerical methods
Our study embraces fully and weakly nonlinear numerical schemes, which are described
in detail below, together with details of the cross wave-field initialisation.

2.1. The ESBI wave model: configuration, verification and validation
The Cartesian coordinate system is adopted here with x = (x, y) being horizontal and
z being vertical coordinates. The still deep-water level is at z = 0. Unless otherwise
specified, the variables are non-dimensionalised, i.e. the distances x, z, and time t are
multiplied by the peak wavenumber kp and angular frequency ωp = √

gkp, respectively.
The parameter g is the gravitational acceleration.

The potential flow theory assumes that the fluid is inviscid and irrotational, leading to
velocities written as gradients of velocity potential φ, rescaled by

√
k3

p/g. The primary
advantage of using the velocity potential is that it is a scalar quantity. Therefore, the
number of unknowns is reduced compared with the Euler or Navier–Stokes equations,
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as the velocity vectors can be obtained directly by calculating the gradient of the velocity
potential.

The free-surface boundary conditions for the potential flow wave theory consist of those
on the water free surface z = η(x, t):

∂η

∂t
+ ∇φ · ∇η− ∂φ

∂z
= 0, (2.1)

∂φ

∂t
+ 1

2

[
|∇φ|2 +

(
∂φ

∂z

)2
]

+ η= 0, (2.2)

where ∇ = (∂x , ∂y) is the horizontal gradient operator.
Equations (2.1) and (2.2) are identical to the canonical pair derivable from the

Hamiltonian water-wave system (Zakharov 1968). They can be rewritten as a skew-
symmetric form (Fructus et al. 2005a):

∂Ψ

∂t
+AΨ =N , (2.3)

where

Ψ =
(

kF {η}
kωF {

φ̃
}) , A=

[
0 −ω
ω 0

]
, N =

⎛⎝ k
(F {V } − kF {

φ̃
})

kω
2 F

{
(V +∇η·∇φ̃)2

1+|∇η|2 − ∣∣∇φ̃∣∣2
}⎞⎠ , (2.4)

and φ̃ = φ(x, z = η, t) denotes the velocity potential at the free surface, V =√
1 + |∇η|2∂nφ is the vertical velocity of the surface elevation, while F{ψ} is the Fourier

transform of quantity ψ in physical space defined as

F{ψ} =
∫∫ ∞

−∞
ψe−ik·x dx, (2.5)

with F−1{ψ} being its inverse transform, i = √−1 and k = |k| and ω= √
k are

dimensionless wavenumber and frequency in Fourier space. The Fourier transform is
implemented numerically by using the fast Fourier transform.

Equation (2.3) can be further reformulated as

Ψ (t)= e−A(t−t0)
[
Ψ (t0)+

∫ t

t0
eA(t−t0)N dt

]
, (2.6)

and can be used as the prognostic equation for updating unknowns η and φ̃ in time with
the integration term evaluated by using a six-stage fifth-order Runge-Kutta method with
embedded fourth-order solution (Clamond et al. 2007; Wang & Ma 2015). In general, to
keep the difference below 1 %, the time step size is automatically adjusted to about 1/20 of
the peak wave period. For large spatio-temporal simulations of strongly nonlinear waves,
a tolerance of 0.1 % is selected corresponding to a time step size of about 1/50 of the peak
wave period, which applies to the crossing sea simulations in the present study.

In order to update the solutions (η, φ̃), the velocity V needs to be diagnosed by solving
the boundary integral equation of Green’s theorem. A successive approximation approach
can be adopted, and the total vertical velocity is expressed as V = ∑

m Vm , where m
represents the order of the nonlinearity O(εm). Here, the expansion parameter ε denotes
the wave steepness. For simplicity, the recurrence formula for estimating Vm in the fully
nonlinear ESBI wave model in deep-water starts with

F {Vm=1} = kF {
φ̃
}
. (2.7)
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Then, the remaining velocities in the Fourier domain are calculated by (Wang 2025)

F {Vm} =
m−1∑
j=1

−k j

j !F
{
η j Vm− j

}
− km−2

(m − 1)! ik ·F
{
ηm−1∇φ̃

}
, (2.8)

for m � 2. In this pseudo-spectrum method, the 2/(m + 1)-rule is used here for anti-
aliasing treatment, which is equivalent to the zero-padding method (Canuto et al. 1987).
We emphasise that a smoothing technique is not required here, and the present model
is very stable for cases without appearance of breaking waves. The model has been
comprehensively verified and validated for a variety of simulated strongly nonlinear and
steep wave phenomena, crossing seas and laboratory experiments (Wang et al. 2018, 2021;
Wang 2025).

Before starting our study, we recall the commonly used definition of a RW, namely
having a crest height ηc exceeding at least 1.25 times the significant wave height Hs , i.e.
ηc > 1.25Hs . In a Gaussian sea state, Hs is approximated as being four times the standard
deviation of the entire water surface elevation. This threshold condition is commonly used
and describes a significant deviation from the average wave height (Kharif et al. 2008;
Gramstad et al. 2018; Mori et al. 2023). In this context, we define tL S as the duration or
lifetime of a series of observed sequences of extreme waves belonging to the same RW
event. This is clarified and discussed later in the article.

The numerical set-up is described next. The computational domain of the simulations
covers 40 × 40 peak wavelengths, and is resolved into 1024 × 512 collocation points
in x (along-wave) and y (cross-wave) directions, respectively. The selected domain size
and resolution in space ensure that the Fourier modes up to seven and three times peak
wavenumber in the x and y directions, respectively, are aliasing-free. The reference sea
state and wave surface condition is based on the JONSWAP spectrum (Hasselmann et al.
1973) with different peakedness factors γ = 1, 2, 3, 4, 6 and 9 and crossing wave field
of steepness kp Hs = 0.28, 0.15 and 0.06. On the selection of wave parameters, given
that limited works have studied the effect of spectrum bandwidth of crossing sea RWs
(Wang et al. 2021), the selected peakedness values ensure that the spectrum widths in the
current work are covered from broadband to narrowband conditions (Goda 2010). The
selected steepness also covers from large to small steepness cases, so that a wide range
of Benjamin–Feir indices and kurtosis values can be expected (Mori & Janssen 2006;
Janssen & Bidlot 2009) which also affects the RW formation. Nevertheless, to maximise
the effect of nonlinearity and thus the occurrence of RWs, we mainly focus our analysis on
the highest steepness kp Hs = 0.28 case, which is consistent with, but not limited to, the
wave condition previously adopted by Wang et al. (2021). To avoid the effects of potential
wave breaking and high steepness values which can lower the accuracy of our model
(Wang 2025), we also tested lower steepness values for validation purposes. The two
crossing wave systems with the same peak frequency f p = 1 Hz, peakedness parameter
γ , significant wave height Hs and random phases cross-interact at an aperture angle of
28◦, 40◦ and 53◦, in which the 40◦ cases are mainly investigated, since these correspond
to the most hazardous angle leading to the highest probability distribution tail (Toffoli
et al. 2011; Cavaleri et al. 2012; Bitner-Gregersen & Toffoli 2014). In table 1 we show the
parameters of all 11 cases simulated by the fully nonlinear ESBI and weakly nonlinear
CNLS frameworks (as introduced in § 2.2) in the data analysis results.

To generate desired waves at x = 0 as the boundary condition, a pneumatic wavemaker
(Clamond et al. 2005) is adopted in the current study, which is a localised oscillating
pressure on the boundary regime of the water surface to mimic the laboratory wavemaker.
We refer the reader to the work by Wang et al. (2021) for further details on numerical wave
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Case no. 1 | 2 | 3 | 4 | 5 | 6 7 | 8 | 9 10 | 11
β 40◦ 28◦ | 40◦ | 53◦ 40◦
kp Hs 0.28 0.15 0.06
JONSWAP γ 2 | 4 | 6 | 1 | 3 | 9 3 9
Simulation ESBI ESBI ESBI | CNLS
Compared in figures 5, 6 | 5, 6, 7, 9 10, 11, 12 13, 14, 15

Table 1. Table of all 11 cases tested numerically in § 3 with varying crossing sea angle β, wave steepness
kp Hs , JONSWAP peakedness factor γ , simulation method(s) adopted and corresponding figures for analysis
and comparison purposes. Note that in all cases, the simulation frequency is fixed at f p = 1 Hz.

1.5
1.0
0.5

0
–0.5

–15 –10 –5 0 5 10 15

30

25
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x/Lp

Figure 1. An exemplified snapshot of a simulated crossing sea surface elevation for case 3 in table 1.

generation. Mathematically, the pressure is the summation of all wave components after a
bell-shaped transformation. According to our previous work (Wang 2025), when given J
wave components in total, while the j th component has amplitude a j , angular frequency
ω j , wavenumber k j , direction θ j and phase ϕ j , the transformation from wave components
to the pressure is written as

pg =
J∑

j=1

a j cos(θ j )

√
e

2π
e−(k j x)2/2 sin[−k j sin(θ j )y +ω j t + ϕ j ]. (2.9)

The wave generation zone is deployed along x = 0 and absorbed at a distance near the
other end. Each simulation lasts for 1000 peak periods Tp (equivalent to a typical three-
hour sea state in a realistic ocean with around 10-second peak period), and four realisations
are performed; thus, each case carried out by the ESBI simulations has a total length of
4000Tp.

A snapshot of the simulated cross free surface as described above is shown in figure 1.
Several large-amplitude wave groups can be observed in directional space at a particular
instant of time.

From equation (2.9), it is clear that linear waves will be generated from the domain
boundary, whereas the second and higher harmonics appear almost instantaneously when
the waves propagate away from the generation zone; see for instance experimental
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Figure 2. Spatio-temporal distribution of crossing sea RW locations across the ESBI numerical domain from
case 3 in table 1. The sampling duration is taken as 250 wave periods for clarity, and both sides (each 10
wavelengths wide) of the numerical domain are neglected in the analysis due to the absence of crossing wave
field. Each circle represents one RW, and its colour indicates the appearance time of the current RW.

studies (He et al. 2022a,c). Hereafter, the velocity potential and free-surface elevation
satisfy the fully nonlinear kinematic and dynamic boundary conditions, attributed to
the fully nonlinear formalism and numerical approach for solving the boundary integral
equation.

The generated wave field under the fully nonlinear ESBI framework is shown to rapidly
evolve to a fully developed state after approximately 20 wavelengths of wave propagation
for crossing wave trains according to the previous kurtosis analysis (Wang et al. 2021). In
figure 2, the long-living and localised RW structures can be clearly observed at a distance
far from the wave generation zone, located at x = 0, and appear throughout the rest and
majority of the domain.

We further emphasise that wave breaking is inevitable under wave condition kp Hs =
0.28. To stabilise the simulations, a low-pass filter is employed to suppress the
breaking (Xiao et al. 2013). This filter is shown to well represent the energy dissipation
quantitatively over a broad range of wave steepness, breaker types and directional
spreading. We refer to a previous work (Wang 2025) for a direct comparison of the model
simulations with laboratory experiments, involving the evolution of kurtosis and wave
crest exceedance probability trends. In order to fully exclude the possible effect of breaking
RWs for very steep states, cases 7–11 in table 1 with reduced wave steepness have been
adopted.

2.2. The hydrodynamic CNLS
The purpose of introducing the CNLS is twofold. It is adopted to compare the strong
RW localisations, as obtained from the fully nonlinear ESBI simulations, with a weakly
nonlinear framework which applies for cross sea modelling (Cavaleri et al. 2012), and
to test if a weakly nonlinear wave framework is sufficient to characterise all measured
RWs observed in the fully nonlinear simulations. We carried out benchmarking numerical
simulations by means of the CNLS, as previously reported and parametrised for water
waves (Okamura 1984; Onorato et al. 2006a) and mentioned in § 1. The two-wavetrain
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deep-water coupled framework is written as

∂u1

∂t
+ cx

∂u1

∂x
+ cy

∂u1

∂y
− iαx

∂2u1

∂x2 − iαy
∂2u1

∂y2 + iαxy
∂2u1

∂x∂y
+ i(ξ |u1|2 + 2ζ |u2|2)u1 = 0,

∂u2

∂t
+ cx

∂u2

∂x
− cy

∂u2

∂y
− iαx

∂2u2

∂x2 − iαy
∂2u2

∂y2 − iαxy
∂2u2

∂x∂y
+ i(ξ |u2|2 + 2ζ |u1|2)u2 = 0,

(2.10)

where the coefficients are defined as

cx = ω̂

2k̂2
κ, cy = ω̂

2k̂2
ι,

αx = ω̂

8k̂4
(2ι2 − κ2), αy = ω̂

8k̂4
(2κ2 − ι2), αxy = − 3ω̂

4k̂4
ικ,

ξ = 1
2
ω̂k̂2, ζ = ω̂

2k̂

κ5 − κ3ι2 − 3κι4 − 2κ4k̂ + 2κ2ι2k̂ + 2ι4k̂

(κ − 2k̂)k̂
,

κ = k̂ cos
β

2
, ι= k̂ sin

β

2
. (2.11)

Here, u1(x, y, t) and u2(x, y, t) are two crossing complex wave envelopes with
wavenumbers of k1 = (κ, ι) and k2 = (κ,−ι), respectively, as mentioned in § 1; β is
the crossing angle; and the dimensional angular frequency ω̂ and the modulus of the
wavenumbers k̂ obey the deep-water dispersion relation k̂ = ω̂2/g. Note that when β = 0
and u2 are inactive, equation (2.10) is uncoupled and naturally reduces to the classical NLS
(Zakharov 1968). The first-order approximation of a two-wave-field crossing elevation
η(x, y, t) is given by

η(x, y, t)= 1
2

(
u1(x, y, t)ei(κx+ιy−ω̂t) + u2(x, y, t)ei(κx−ιy−ω̂t) + c.c.

)
, (2.12)

where c.c. denotes the complex conjugate. To ensure highest numerical accuracy, fourth-
order Runge-Kutta and pseudo-spectral methods (Yang 2010) are adopted to advance
equation (2.10) in time. The two equations are coupled in a staggered manner, as already
adopted by He et al. (2022b) to validate laboratory observations. The corresponding
numerical results are reported and compared with the fully nonlinear ESBI results in
§ 3.3. Note that the same numerical domain size and time have been adopted in the CNLS
simulations as in the ESBI simulations.

3. Lifespan analysis of emerged RWs and categorisation
We begin by reasonably assuming that crossing RWs develop along the positive x
direction, i.e. at β = 0. During the prescribed evolution, when observing the wave
elevation field, several localised peaks can be identified and tracked during their
development before and after the steepest wave group focusing, and as figure 2 also
indicates, a phenomenon also known as ‘three sisters’ (Kharif et al. 2008; Magnusson
et al. 2019). This process can be referred to as a RW ‘event’ (Chabchoub et al. 2012;
Sergeeva & Slunyaev 2013; Slunyaev et al. 2016; Kokorina & Slunyaev 2019; Slunyaev
2024). Considering the arguments above, we assume that crossing RWs within a same
‘event’ occur consecutively in both space (along the positive x direction) and time (along
the positive time axis). Thus, we trivially define that two RWs are considered part of
one ‘event’ if their adjacent distance does not exceed two wavelengths in the positive x
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Figure 3. Comparison of two exemplary crossing RW events. Both events are extracted from case 3 in table 1
with different lifespans tL S , evolving from the top to bottom in each column. The averaged direction wave-field
evolution is plotted every two peak wave periods Tp . When t/Tp = 0, the current RWs reach their peak. The
left-hand column shows a short-lifespan RW event with tL S = 1Tp only. The right-hand column shows a long-
lifespan RW event with tL S = 40Tp . The orthogonal white dashed lines indicate the location of the compared
RW events relative to the reference centre point.

direction and 0.8 wavelengths in the perpendicular direction. In addition to that, the latter
RW must occur within a time interval not exceeding five wave periods. Note that sufficient
redundancy has been reserved for the above spatial and temporal intervals, so that the
lifespan may be slightly longer. That said, this hardly affects the upcoming ensemble
analysis results, which are merely based on individual peak RWs of each event. Thus,
the lifespan of an independent event tL S can be defined as:

tL S = tRW,end − tRW,ini , (3.1)

where tRW,ini and tRW,end are the occurrence time of the first and last identified RW in an
identified extreme localisation event. In particular, we refer to the events with tL S/Tp = 1
as short-lived ones with a lifespan equal to or less than one peak wave period.

According to the above-mentioned technique to group a series of RWs into RW events
sharing the same lifespan, we identify and compare two representative RW events with
different tL S in figure 3, which are extracted from the same random wave field, such as
that computed and represented in figure 1. This suggests that RWs appearing at different
time-scale lengths along the positive x direction can be observed within the same crossing
wave field. To simplify the further analysis, we treat such cases as independent events with
the first class of these events being conjectured as a result of wave interference, due to the
very short focusing time, as elaborated in § 3.2.
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Figure 4. Spatio-temporal evolution of the averaged directional RW events generated from case 5 in table 1
with long lifespan (tL S > 35Tp) and at three different stages of extreme focusing evolution: 20Tp before
reaching the peak (left-hand panels), at the focusing peak (t = 0) (centre panels) and 20Tp after the peak
(right-hand panels). Upper row: the averaged elevation field. Lower row: corresponding average wave energy
spectra.

3.1. Spatio-temporal evolution of long-lived directional coherent RW structures
To further examine whether the observed long-lived localised wave structures experience
both significant growth and decay in wave height, and thus obey the definition of a RW,
i.e. being localised in both space and time, and intuitively speaking ‘appearing from
nowhere and disappearing without a trace’ (Akhmediev et al. 2009), we depict in figure 4
fully nonlinear numerical results of the averaged long-lifespan RW elevation field and its
corresponding directional spectra 20Tp before the peak, during the maximal focusing and
20Tp after the peak.

In figure 4, we can observe a strong wave-amplitude focusing followed by a decay
in both x and y directions, as well as a severe broadening and narrowing of the
directional spectrum. The current observations also show that a clearly detectable long-
lived breathing-type process can occur in directional seas, featured by a directional spatial
localisation at t = 0 as well as the temporal localisation throughout the evolution process
20Tp before and after the peak along the positive x direction. Thus, these observed
directional and particular RW structures are likely to be a result of nonlinear interactions,
which indeed yield a full localisation in time and directional space. To the best of our
knowledge, such a pulsating wave phenomenon with longevity features has so far not been
reported and not discussed in detail by means of fully nonlinear numerical simulations.

To further characterise and distinguish these RW events in such irregular cross sea states,
it is important to extract key statistical characteristics, which are analysed and discussed
as next.

3.2. Statistical analysis of RW events in crossing seas
In the following, we extract all independent RW events from the fully nonlinear ESBI
numerical data and calculate the corresponding probability density function (PDF) with
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Figure 5. Statistical PDF results of the correlation between the amplification factors, defined as ηmax/Hs ,
their lifespans tL S as RWs along the positive x-directions and the PDF while considering different JONSWAP
spectral peakedness parameter γ values, i.e. cases 1–6 in table 1.

a categorisation with respect to both tL S and maximum wave crest height ηmax of the
extreme events. Figure 5 shows the PDFs of all independent events, which are generated
with respect to the maximum amplification factor and the normalised lifespan for all six
JONSWAP-γ cases with the identical Hs values, as mentioned earlier.

The results indicate that most independent events have a short lifespan, suggesting that
the wave superposition principle is a dominant focusing mechanism for our modelled cross
sea states. That being said, around one in 105 to 103 events exhibits significantly longer
lifespans, depending on the JONSWAP peakedness parameter γ value considered, with a
trend of increasing amplification factor by gradually narrowing the initial energy spectrum.
Such observations indicate the existence of a nonlinear focusing mechanism responsible
for such wave amplifications, despite having a low probability of emergence. However, the
fact that such RWs are recurrent, i.e. experience recurrent focusing, these can indeed still
pose a significant threat in the ocean.

To interpret these nonlinear RW events, we analyse in figure 6 the events according to
their lifespans and the spectral directionality measured by the full area at half maximum
(FAHM), which is simply a two-dimensional generalisation of the well-known concept
of full width at half maximum measuring the bandwidth of a power spectrum. Similar
concepts or approaches have been involved in previous works when studying the nonlinear
evolution of directional wave fields (Toffoli et al. 2010; Osborne & Ponce de León 2017),
yet may have not considered a variety of cases or quantified the physical features, which are
different from the current dual bimodal system studied. Notably, we did not introduce any
initial directional spreading and the two wave trains are perfectly unidirectional initially.
Since the distributions of the RWs are highly non-uniform along the tL S/Tp axis, a
good linear fit and reasonable clustering can be achieved upon averaging all original
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Figure 6. The correlation between the RWs’ lifespans tL S/Tp and their directional FAHM factor. The left y
axis represents the FAHM values of all RWs visualised by dots, and the right y axis shows the FAHM values
of the averaged RW elevation fields (instead of the averaged FAHM value) depicted by larger circles. Here,
an averaging interval of tL S = 0.6 is used. Considering the FAHM of the averaged RW elevation, the data are
categorised into three K-means clusters in different colours. The linear fit and 95 % confidence interval are also
given for each case, i.e. cases 1–6 in table 1.

RW elevation data along the tL S axis within every certain interval. It is chosen to be
tL S/Tp = 0.6 in our case.

Surprisingly, those nonlinear RW events with longer lifespans show greater FAHM
levels, suggesting the occurrence of a long-term broadening of the directional wave
spectrum. Here, we highlight the work by Toffoli et al. (2010), which numerically observed
the development of a similar bimodal pattern in the spectra. Meanwhile, the analysis by
Osborne & Ponce de León (2017) showed that an initial and single JONSWAP spectrum
could also become directionally unstable along the modulation channel. However, these
strongly relevant studies were not directly related to the formation of full-spatial localised
and directional RW structures. For further ease of the analysis, the RW events under each γ
case considered in figure 6 are categorised into three K-means clusters (Lloyd 1982; Arthur
et al. 2007; Cremonini et al. 2021), by using different colours, each representing a group of
independent RW events with different FAHM and lifespan ranges. Note that the clustering
is mainly used to group the many RW data observed from the simulations, and is achieved
by adopting the K-means++ algorithm as developed by Arthur et al. (2007), which is
more effective than the standard K-means algorithm (Lloyd 1982). As a result, the current
K-means clustering in figure 6 derives three groups of RW events, each with distinct ranges
of FAHM (two-dimensional bandwidth) and tL S . These can be approximately understood
as linear, quasi-linear and nonlinear RW events. The specific tL S intervals of the clusters
under different γ values are summarised in table 2.
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JONSWAP γ 1 2 3 4 6 9
Case no. 4 1 5 2 3 6
Cluster 1 tL S range (∗Tp) [1, 15) [1, 14) [1, 18) [1, 18) [1, 16) [1, 17)
Cluster 2 tL S range (∗Tp) [15, 29) [14, 32) [18, 36) [18, 37) [16, 35) [17, 36)
Cluster 3 tL S range (∗Tp) [29, 60) [32, 60) [36, 60) [37, 60) [35, 60) [36, 60)

Table 2. The tL S intervals of three clusters under different JONSWAP γ values corresponding to figure 6.
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Figure 7. Averaged RW local elevation field, truncated according to the three K-means clusters from
figure 6 (top three rows), and compared with the averaged RW elevation field calculated from all tL S = 1Tp
cases corresponding to one-RW events (fourth row), with all RW events as reference (fifth row), and the
corresponding second-order NewWave theory spectrum (bottom row). Cases 4, 5 and 6 in table 1 are considered
in the figure.

Upon averaging the RW events within each cluster and tracking the directional wave
elevation field evolution, we can notice in figure 7 deviations between the long-living
RW elevation fields and the NewWave theory (Taylor & Williams 2004) with lifetime
tL S/Tp = 1 (bottom row), which increases with the increase of tL S or the cluster number.
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tL S/Tp = 1 only; bottom right: the longest-living RWs (i.e. cluster 3).

This is particularly the case for cluster 3, in which the elevation fields are nearly
independent of the initial JONSWAP peakedness γ values and form four dark wave
trough holes around the centre peak. In fact, by averaging all RW events, the ‘all cluster’
results are almost consistent with the corresponding linear NewWave theory due to the
dominance of short-living RW events. In such case, the role of long-living nonlinear RWs
is completely overlooked.

In order to further understand and provide a more comprehensive picture of the
observations above, figure 8 shows the three-dimensional shapes and characteristics of RW
surface elevation fields as derived from the NewWave theory and numerical data clusters.

Whether such a coherent structure implies a possible deterministic description of
so-called higher-dimensional nonlinear RWs, as is the case for NLS breathers for
unidirectional wave states, needs future attention.

Notably, the overall three-dimensional shapes of these extreme waves is qualitatively
similar to those already reported by Liu et al. (2022), yet the main focus of the latter
work was not on the RW event longevity under variable JONSWAP peakedness parameters
while varying crossing angles and wave steepness values. Considering the above, we next
show the corresponding spectra of all cases discussed and shown in figure 9, confirming
once again the significant and distinctive broadening of the directional spectrum from

1008 A3-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

15
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.155


Y. He, J. Wang, J. He, Y. Li, X. Feng and A. Chabchoub

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

0

–5

–10 dB

–15

–20

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

2

1

0
–5 0 5

k
x/
k

p

ky/kp

C
lu

st
er

 3
C

lu
st

er
 2

C
lu

st
er

 1
T

h
eo

re
ti

ca
l

A
ll

 c
lu

st
er

s
t L

S/
T p

 =
 1

γ = 1 γ = 3 γ = 9

Figure 9. Averaged RW local spectra corresponding to figure 7.

short- to long-lived tL S RW events. Note that with longer tL S , the directional spectrum
gradually differs from the wave interference case, which is rather characterised by
remaining narrowband in the two wave directions after the extreme wave focusing. Despite
this, from both figures 7 and 9, one can notice that averaging all RW events can easily lead
to the neglect of clusters 2 and 3, which are most affected by nonlinearity and directional
spreading. Further, these clusters are characterised by the development of a dual bimodal
structure in the spectrum. It is therefore recommended to consider and adopt an appropriate
aggregated approach to analyse the real-world RW data (Häfner et al. 2021).

In order to further validate our observation on such novel RW structure in crossing seas
and avoid any potential wave breaking, we next investigate the effect of varying crossing
angle on the formation of such RW structure. Figure 10 shows statistical PDF results of all
RW events after lowering the wave steepness from the previous kp Hs = 0.28 to kp Hs =
0.15 and consider three different crossing angles β = 28◦, 40◦ and 53◦ , i.e. cases 7, 8
and 9 in table 1. One can notice from the current statistical results that RW events have
a significantly smaller amplification factor and tL S at β = 28◦ compared to the other
two crossing angles, suggesting a much weakened nonlinear interaction between the two
wave trains at a small crossing angle. This can be further confirmed in figure 11 showing
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Figure 11. Averaged RW local elevation field, truncated according to the three K-means clusters in the same
approach as for figure 7, and compared with the averaged RW elevation field calculated from all tL S = 1Tp cases
corresponding to one-RW events (fourth row), with all RW events as reference (fifth row) and the corresponding
second-order NewWave theory spectrum (bottom row). Cases 7, 8 and 9 from table 1 are analysed in the figure.
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Figure 12. Averaged RW local spectra corresponding to figure 11.

the averaged directional RW elevation field. From figure 11 revealing the corresponding
averaged RW elevation field, we can indeed notice that the change of the RW’s directional
surface elevation with tL S is not significant when β = 28◦ compared with the other two
angles that are within the most unstable region of 40◦−60◦. The above observation is in
qualitative agreement with the CNLS predictions (Onorato et al. 2006a) as well as with
previous numerical and experimental evidence (Toffoli et al. 2010; Cavaleri et al. 2012).

Furthermore, the spectral evolution in figure 12, as well as that with fixed angle in
figure 9, exhibits again a clear dual bimodal frequency evolution trend with a crossing
angle β within 40◦−60◦ (Toffoli et al. 2010).

3.3. Comparison with the CNLS framework
To gain deeper insight into the role of nonlinearity, specifically the degree and order, in
the manifestation of coherent, directional, large-amplitude waves in a crossing sea set-up,
we compare the fully nonlinear results with simulations based on the CNLS framework.
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Figure 13. Comparison of directional and averaged RW local elevation field simulated by means of the fully
nonlinear (ESBI) framework (left-hand panels) and the corresponding weakly nonlinear (CNLS) framework
(right-hand panels), i.e. cases 10 and 11 from table 1.

After being classified into three K-means clusters, the directional and localised RW
elevation results in figure 13 show a trend similar to those in figure 7 for a low significant
wave height kp Hs = 0.06 within the JONSWAP wave field generated in each direction
with γ = 9. Such wave height scales have been chosen to motivate future laboratory
experiments.

Differences in averaged wave envelope shapes are noticeable in figure 13, particularly
for the long-lived extreme waves, which belong to clusters 2 and 3. The directional spectra
in figure 14 further confirm a typical and expected spectral broadening in both fully and
weakly nonlinear frameworks. In fact, the CNLS predicts a broader spectrum and reduced
dual bimodality trend, compared with the fully nonlinear ESBI simulations.

Intriguingly, one can also observe the differences in the extreme wave envelope peaks, as
magnified in figure 15. While the bottom cluster 1 wave envelopes within the figure appear
to be the result of wave overlap, showing a quasi-similar pattern, the long-lived extreme
events in clusters 2 and 3 exhibit a completely different and distinct shape when simulated
by the fully and weakly nonlinear frameworks. Such directional localised wave patterns
at these different angles cannot be analytically modelled so far. Consequently, a complete
and quantitative characterisation of these coherent extreme waves requires comprehensive
future numerical and experimental explorations.

4. Discussion and conclusion
This paper investigates key physical and statistical properties of RW events in crossing
JONSWAP-type sea states using a fully nonlinear ESBI framework (Wang et al. 2021) and
a lifespan-based analysis approach (Chabchoub et al. 2012; Kokorina & Slunyaev 2019).
Among the three selected crossing angles, we mainly focus on the most hazardous β = 40◦
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Figure 14. Comparison of the averaged RW local spectra corresponding to figure 13.
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Figure 15. Comparison of the magnified and directional-averaged localised maximal envelope peak shapes
corresponding to figure 13.

case and analyse RWs under different JONSWAP spectrum bandwidths and significant
wave heights (Toffoli et al. 2011; Cavaleri et al. 2012; Bitner-Gregersen & Toffoli 2014).

Our fully nonlinear numerical ESBI results reveal RW events developing along the
positive x direction with lifespans ranging from 1Tp, satisfying the RW threshold criterion,
up to 40Tp and beyond. For these long-lasting nonlinear RW events, we observe a clear
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focusing and decay process of the averaged directional wave elevation field, along with
a distinct recurrence of the averaged directional wave spectrum. This suggests that wave
superposition and the classical (unidirectional) MI (Benjamin & Feir 1967; Mori et al.
2011) are insufficient for the prediction of all extreme wave events in such realistic
directional seas.

On the other hand, we further analyse the statistical characteristics of such crossing RW
events by varying the JONSWAP peakedness factor γ and notice that the probability of
long-lifespan events increases with increasing γ , highlighting the potential role of quasi-
four-wave resonant interactions in one of the two colliding wave beams, which might
be not substantially influenced by the other wave-field component. Moreover, previous
studies point to the significance of spreading effects (Toffoli et al. 2010) as well as
directional weakly nonlinear effects (Osborne & Ponce de León 2017) in RW generation.
The emergence of the localised severe and typical spectral broadening followed by a dual
bimodality further supports the role of nonlinear wave interactions in the formation of
RWs in cross seas.

Furthermore, classifying RW events into three clusters based on their corresponding
lifespans reveals a gradual deviation of the three-dimensional elevation and energy spectra
from the NewWave theory (superposition principle) with increasing longevity of the
extreme wave events. Similar deviation and dual bimodality of the long-living RW events
are also observed under a lower significant wave height and different crossing angles to
exclude wave-breaking events, further supporting our observations above.

In order to explore the role of weakly nonlinear effects in the lifetime of RWs, we
compare the fully nonlinear ESBI numerical results with the weakly nonlinear CNLS
simulations. Both frameworks exhibit very good qualitative agreement, with consistent
changes in wave elevation patterns and directional spectral broadening, particularly
observed for longer extreme event lifespans. Interestingly, cluster 3, which regroups the
long-lifespan extreme wave envelopes, reveals unique discrepancies in the RW coherence
when modelled by ESBI and CNLS. This is likely due to the limitations of the CNLS
approach (Liu et al. 2022) and of the Hilbert transformation for such wave systems.

Note that our study also differs from the experimental results reported by Steer
et al. (2019a). In the latter work, the authors superimpose two oblique and non-
dispersive Gaussian wave envelopes to a unidirectional wave train, while our current work
investigates two crossing random JONSWAP wave fields having a different wave vector.
Moreover, the directional extreme events considered in our work do not remain stationary.
Although Steer et al. (2019a) and the current work both report ‘X-like’ wave shape, the
formation mechanisms and amplification factors are distinct. Furthermore, our study is in
agreement with previous studies investigating random crossing seas (Toffoli et al. 2010;
Cavaleri et al. 2012;Wang et al. 2021), suggesting that maximum kurtosis can be achieved
for crossing angles ranging between 40◦and 60◦, and further revealed the distinguished
crossing RW structures under both fully nonlinear ESBI and weakly nonlinear CNLS
frameworks.

While predicting such extreme localisations is to date not analytically fully understood,
the spatio-temporal localised and directional RW solutions (Qiu et al. 2016; Guo et al.
2020) offer promising avenues for future investigation.

In conclusion, this work unveils a characteristic type of directional nonlinear and
coherent RW structure in crossing seas, highlighting the role of nonlinear wave interaction
in the formation of extreme events in colliding two-wave systems. The detected RWs
are characterised by short and long lifespans developing along the positive x direction
while the corresponding directional spectrum broadening is followed by a distinct dual
bimodal pattern. We also confirm that CNLS is sufficient to qualitatively describe such
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long-lived freak waves for moderate steepness values. Further theoretical and experimental
studies are necessary to fully comprehend and predict these nonlinear waves, beyond the
limitations of the wave set-up and the CNLS framework as adopted in this work.
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