The Hardy Formation, a sequence of Upper Mesozoic volcanic rocks exposed in Peninsula Hardy (Isla Hoste) in the southernmost archipelago of Chile represents, at least in part, the island-arc assemblage of an island-arc-marginal-basin system related to an eastward dipping subduction zone. This island arc was founded on South American continental crust and is also represented in the island of South Georgia 2000 km to the E. The island-arc assemblage includes pyroclastic rocks, characterized by a high proportion of vitric material, and lava intercalations ranging in composition from rhyolite to basalt. These rocks underwent zeolite and prehnite-pumpellyite facies metamorphism and are gently folded, in contrast with the intense folding exhibited by the rocks exposed to the north of Peninsula Hardy. Silicic volcanics assigned to this assemblage underlie pillow lavas, and are intruded by dolerites and gabbros probably related to a Late Jurassic-Early Cretaceous ophiolite magmatism associated with the generation of a quasioceanic marginal basin. Volcanic turbidites (Yahgan Formation) were deposited into the marginal basin.
It is suggested that in pre-marginal basin times the Hardy Formation interfingered towards the Atlantic with the silicic volcanics of the Tobifera Formation. However, recent geochemical work on the Tobifera Formation suggest an origin by continental crust anatexis in a volcano-tectonic rift zone related to upper mantle diapirism, whereas an island arc origin is favoured for at least the andesitic and basaltic components of the Hardy Formation. Therefore, the geology of Peninsula Hardy as presented here, confirms early assumptions of the splitting apart of a Middle–Upper Jurassic volcanic terrain along the Pacific margin of South America during the generation of a marginal basin. The spreading axis of the latter seems to have been located at the boundary of two somewhat overlapping petrotectonic assemblages: and island arc on the Pacific side and a silicic volcano-tectonic rift zone towards the Atlantic. A probably Cenozoic volcanic complex discordantly overlies the Yahgan and Hardy formations.