Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T02:09:38.709Z Has data issue: false hasContentIssue false

Tektites probably wholly terrestrial and related to continental movement

Published online by Cambridge University Press:  01 May 2009

A. R. Crawford
Affiliation:
Department of Geology, University of CanterburyChristchurch 1, New Zealand

Summary

The four groups of tektites are now widely regarded as the product of splash from a meteoritic or cometary impact melt of terrestrial rock. They include two groups (Moldavites and Ivory Coast tektites) attributed to the Nordlinger Ries and Bosumtwi craters. These craters seem unlikely to be of impact origin, though hyper-explosive. Tektites are, therefore, more probably all wholly terrestrial. For much the largest group, those of the combined Southeast Asian-Australian strewnfield, no satisfactory source is known. An origin in Southeast Asia, even by impact, is improbable. A possible source lies in Central Asia. The hyper-explosive activity is regarded as an extreme form of volcanism, a consequence locally and rarely of the continual combined vertical and ‘horizontal’ movements of continents, here termed tribulation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. W. & Huffaker, R. M. 1964. Aerodynamic analysis of the Tektite problem. Geochim. cosmochim. Acta 28, 881–92.CrossRefGoogle Scholar
Anders, E. 1960. The record in the meteorites. II. On the presence of aluminium-26 in meteorites and tektites. Geochim. cosmochim. Acta 19, 5362.CrossRefGoogle Scholar
Baker, G. 1959. Tektites. Mem. Natl Mus. Victoria Melbourne, no 23.CrossRefGoogle Scholar
Baker, G. 1963. Form and sculpture in tektites. In Tektites (ed. O'Keefe, J. A.), pp. 124. Chicago: University of Chicago Press.Google Scholar
Barnes, V. E. 1940. North American tektites. Univ. of Texas Publ. 3945, 477582.Google Scholar
Barnes, V. E. 1961. Temperature of tektite formation. CERN Conference on Fission and Spallation Phenomena and Their Application to Cosmic Rays,Sept. 26–29,Geneva.Google Scholar
Barnes, V. E. 1963. Tektite strewnfields. In Tektites (ed. O'Keefe, J. A.), pp. 2550. Chicago: University of Chicago Press.Google Scholar
Barnes, V. E. 1971. Description and origin of large tektite from Thailand. Chemie Erde 30, 1319.Google Scholar
Barnes, V. E. & Barnes, M. A. 1973. Tektites. Stroudsburg, Pennsylvania: Dowden Hutchinson & Ross.Google Scholar
Barnes, V. E. & Pitakpaivan, K. 1962. Origin of Indochinite tektites. Proc. natn. Acad. Sci. U.S.A. 48, 947–55.CrossRefGoogle ScholarPubMed
Barnes, V. E. & Russell, R. V. 1966. Devitrification of glass around collapsed bubbles in tektites. Geochim. cosmochim. Acta 30, 143–52.CrossRefGoogle Scholar
Barnes, V. E. & Underwood, J. R. Jr 1976. New investigations of the strewn field of Libyan Desert glass and its petrography. Earth Planet. Sci. Lett. 30, 117–22.CrossRefGoogle Scholar
Beyer, H. O. 1943. Philippine tektites and the tektite problem in general. Smithsonian Instn, Ann. Report, 1943, pp. 253–9.Google Scholar
Bouška, V. 1964. Geology and stratigraphy of moldavite occurrences. Geochim. cosmochim. Acta 28, 921.CrossRefGoogle Scholar
Brock, B. B. 1972. A Global Approach to Geology. Cape Town: Balkema.Google Scholar
Bucher, W. 1963. Cryptoexplosion structures caused from without or from within the Earth? (‘Astroblemes’ or ‘Geoblemes’). Am. J. Sci. 261, 597649.CrossRefGoogle Scholar
Bullen, K. E. 1975. The Earth's Density. London: Chapman & Hall.CrossRefGoogle Scholar
Cassidy, W. A., Glass, B. & Heezen, B. 1969. Physical and chemical properties of Australian microtektites. J. geophys. Res. 74, 1008–14.CrossRefGoogle Scholar
Chalmers, R. O., Henderson, E. P. & Mason, B. 1976. Occurrence, distribution and age of Australian tektites. Smithson. Contrib. Earth Sci. no. 17.CrossRefGoogle Scholar
Chao, E. C. T. 1963. The petrographic and chemical characteristics of tektites. In Tektites, (ed. O'Keefe, J. A.), pp. 5194. Chicago: University of Chicago Press.Google Scholar
Chao, E. C. T., Adler, F., Dwornik, E. J. & Littler, J. 1962. Metallic spherules in tektites from Isabela, Philippine Islands. Science, N.Y. 135, 97–8.CrossRefGoogle ScholarPubMed
Chao, E. C. T., Merrill, C. W., Cuttitta, F. & Annell, C. 1966. The Aouelloul crater and Aouelloul glass of Mauritania, Africa. Trans. Am. Geophys. Union 47, 144.Google Scholar
Chapman, D. R. 1964. On the unity and origin of Australasian tektites. Geochim. cosmochim. Acta 28, 841–80.CrossRefGoogle Scholar
Chapman, D. R. 1971. Australian tektite geographic pattern, crater and ray of origin, and theory of Tektite Events. J. geophys. Res. 76, 63096338.CrossRefGoogle Scholar
Chapman, D. R. & Gault, D. E. 1967. Critique of ‘cometary impact and the origin of Tektites’. J. geophys. Res. 72, 2695–9.CrossRefGoogle Scholar
Chapman, D. R., Larson, H. K. & Schieber, L. C. 1964. Population polygons of tektite specific gravity for various localities in Australasia. Geochim. cosmochim. Acta 28, 821–39.CrossRefGoogle Scholar
Chapman, D. R. & Schieber, L. C. 1969. Chemical investigation of Australasian tektites. J. geophys. Res. 74, 6737–73.CrossRefGoogle Scholar
Clarke, R. S. Jr & Wosinski, J. F. 1963. Baddeleyite inclusion in Martha's Vineyard tektite. Geochim. cosmochim. Acta 31, 397406.CrossRefGoogle Scholar
Clarke, R. S., Woskinski, J. F., Marvin, R. F. & Friedman, I. 1966. Potassium-argon ages of artificial tektite glass. Trans. Am. Geophys. Union. 47, 144.Google Scholar
Clayton, P. A. & Spencer, L. J. 1934. Silica-glass from the Libyan Desert. Mineralog. Mag. 23, 501–8.Google Scholar
Cohen, A. J. 1961. A semi-quantitative hypothesis of tektite origin by asteroid impact (Abstract) J. geophys. Res. 66, 2521.Google Scholar
Cohen, A. J. 1963 (a). Asteroid- or comet-impact hypothesis of tektite origin: the moldavite strewn-field. In Tektites (ed. O'Keefe, J. A.), pp. 189211. Chicago: University of Chicago Press.Google Scholar
Cohen, A. J. 1963. Asteroid-impact hypothesis of tektite origin. III. The Southeast Asian strewn fields. In (ed.) Space Research III. Proc. third Int. Space Sci Symp., Washington, 1962 (ed. Prelster, W.) pp. 950–73. North Holland.Google Scholar
Colgate, S. A. & Sigurgeisson, T. 1975. Dynamic mixing of water and lava. Nature, Lond. 244, 552–5.CrossRefGoogle Scholar
Compston, W. & Chapman, D. R. 1969. Sr isotope patterns within the southeast Australasian strewnfield. Geochim. cosmochim. Acta 33, 1023–36.CrossRefGoogle Scholar
Crawford, A. R. 1978. Non-random distribution of many so-called impact structures and its implications. Naturwissenschaften 65, 520–6.CrossRefGoogle Scholar
Cressyk, P. J., Schnetzler, C. C. & French, B. M. 1972. Aouelloul glass: aluminum-26 limit and some geochemical comparisons with Zli sandstone. J. geophys. Res. 77, 3043–57.CrossRefGoogle Scholar
Currie, K. L. 1965. The geology of the New Quebec crater. Can. J. Earth Sci. 2, 141–60.CrossRefGoogle Scholar
Currie, K. L. 1967. Stock metamorphism in the Carswell circular structure, Saskatchewan, Canada. Nature, Lond. 213, 56–7.CrossRefGoogle Scholar
Currie, K. L. 1968. Misastin Lake, Labrador: A new Canadian crater. Nature, Lond. 220, 776.CrossRefGoogle Scholar
Currie, K. L. & Shafiqullah, M. 1967. Carbonatite and alkaline igneous rocks in the Brent Crater, Ontario. Nature, Lond. 215, 725–6.CrossRefGoogle Scholar
Cuttitta, F., Carron, M. K. & Annell, C. S. 1972. New data on selected Ivory Coast tektites. Geochim. cosmochim. Acta 36, 12971309.CrossRefGoogle Scholar
Daubeny, C. 1848. A Description of Active and Extinct Volcanoes, of Earthquakes, and of Thermal Springs: with Remarks on the Causes of these Phenomena, the Character of Their Respective Products and Their Influence on the Past and Present Conditions of the Globe. London: Richard and John E. Taylor.Google Scholar
Darwin, C. 1844. Geological Observations on the Volcanic Islands Visited during the Voyage of H.M.S. Beagle. [Part 2 of The Geology of the Voyage of the Beagle]. London: Smith, Elder.Google Scholar
sirDavid, T. W. E., Summers, H. S. & Ampt, G. A. 1927. The Tasmanian tektite – Darwin glass. Proc. R. Soc. Victoria 39 (N.S.), 167–90.Google Scholar
Dence, M. R. 1972. The nature and significance of terrestrial impact structures. 25th Int. Geol. Congr. Montreal, Section 15, 7789.Google Scholar
Ehmann, W. D. & Kohman, T. P. 1958. Cosmic-ray-induced radioactivities in meteorites. II. 26Al, 10Be and 60Co, aerolites, siderites and tektites. Geochim. cosmochim. Acta 14, 364–79.CrossRefGoogle Scholar
El Goresy, A. 1968. The opaque minerals in impactite glasses. In Shock Metamorphism of Natural Materials (ed. French, B. M. & Short, N. M.) pp. 531–54. Baltimore: Mono Book Corpn.Google Scholar
Fenner, C. 1935. Australites. II. Numbers, forms, distribution and origin. R. Soc. S. Aust., Trans. & Proc. 59, 125–40.Google Scholar
Fleischer, R. L. & Price, P. B. 1964. Fission-track evidence for the simultaneous origin of tektites and other natural glasses. Geochim. cosmochim. Acta 28, 755–60.CrossRefGoogle Scholar
Fleischer, R. L., Price, P. B. & Walker, R. M. 1965. On the simultaneous origin of tektites and other natural glasses. Geochim. cosmochim. Acta 29, 161–6.CrossRefGoogle Scholar
Fleischer, R. L., Price, P. B. & Woods, R. T. 1969. A second tektite fall in Australia. Earth Planet. Sci. Lett. 7, 51–2.CrossRefGoogle Scholar
Florensky, P. V. 1975. Meteoritnii krater Zhamanshin (Severnoe Priaral'e) i ego tektiti i impaktitii. Izv. Akad. Nauk SSSR (Seria geol.) 10, 7386.Google Scholar
Ford, R. J. 1972. A possible impact crater associated with Darwin glass. Earth Planet. Sci. Lett. 16, 228–30.CrossRefGoogle Scholar
Freeberg, J. H. 1966. Terrestrial impact structures – A bibliography. Bull. U.S. geol. Surv. no. 1220.Google Scholar
Freeberg, J. H. 1969. Terrestrial impact structures – A Bibliography 1965–68. Bull. U.S. geol. Surv. no. 1320.Google Scholar
French, B. M.Underwood, J. R. Jr & Fisk, E. P. 1974. Shock metamorphic effects in two new Libyan impact structures. Bull. geol. Soc. Am. 85, 1425–8.2.0.CO;2>CrossRefGoogle Scholar
Furness, L. J. 1977. Tektite find at Hindmarsh Tiers. Quart. Geol. Notes, Geol. Surv. S. Aust. 63, 21.Google Scholar
Gentner, W., Lippolt, H. J. & Schaeffer, O. A. 1963. Argonbestim-mungen am Kalium mineralien. XI. Die Kalium-Argon-Alter der Gläser des Nordlinge Rieses und der Böhmisch-Mährische Tektite. Geochim. cosmochim. Acta 27, 191200.CrossRefGoogle Scholar
Gentner, W., Storzer, D. & Wagner, G. A. 1969. New fission-trackages of tektites and related glasses. Geochim. cosmochim. Acta 33, 1075–81.CrossRefGoogle Scholar
Gentner, W. & Zähringer, J. 1960. Das Kalium-Argon-Alter von Tektiten. Z. Naturf. 15a, 93–9.CrossRefGoogle Scholar
Geological Society of Australia. 1971. Tectonic Map of Australia and New Guinea 1:5 m. Sydney.Google Scholar
Gill, E. D. 1965. Quaternary geology, radio-carbon datings and the age of australites. Spec. Pap. geol. Soc. Am. 84, 4-5-432.Google Scholar
Gill, E. D. 1970. Age of Australite fall. J. geophys. Res. 75, 9961002.CrossRefGoogle Scholar
Glass, B. P. 1967. Microtektites in deep-sea sediments. Nature, Lond. 214, 372–4.Google Scholar
Glass, B. P. 1968. Glassy objects (microtektites?) from deep-sea sediments near the Ivory Coast. Science, N.Y. 161, 891–3.CrossRefGoogle ScholarPubMed
Glass, B. P. 1969. Chemical composition of Ivory Coast microtektites. Geochim. cosmochim. Acta 33, 1135–47.CrossRefGoogle Scholar
Glass, B. P. 1970. Comparison of chemical variation in a flanged australite with the chemical variation among ‘normal’ Australian microtektites. Abstr. geol. Soc. Am. 7, 80.Google Scholar
Glass, B. P., Baker, R. N., Storzer, D. & Wagner, G. A. 1973. North American microtektites from the Caribbean Sea and their fission track age. Earth Planet. Sci. Lett. 19, 184–92.CrossRefGoogle Scholar
Gondarzi, G. H. 1970. Geology and mineral resources of Libya: a reconnaissance. Prof. Pap. U.S. geol. Surv. no. 660.Google Scholar
Hills, L. 1915. Darwin glass. Rec. geol. Surv. Tasmania no. 3, 116.Google Scholar
Junner, N. R. 1937. The geology of the Bosumtwi caldera and surrounding country. Bull. Gold Coast geol. Survey 8, 538.Google Scholar
King, E. A. Jr. 1964. New data on Georgia tektites. Geochim. cosmochim. Acta 28, 915919.CrossRefGoogle Scholar
King, E. A. Jr 1966. Baddeleyite inclusion in a Georgia tektite. Trans. Am. geophys. Un. 47, 145.Google Scholar
King, E. A. & Arndt, J. 1977. Water content of Russian tektites. Nature, Lond. 269, 48–9.CrossRefGoogle Scholar
Kleinmann, B. 1969. The breakdown of zircon observed in the Libyan Desert glass as evidence of its impact origin. Earth Planet. Sci. Lett. 5, 497501.CrossRefGoogle Scholar
von Koenigswald, G. H. R. 1957. Tektites from Java. Proc. K. Ned. Akad. Wetens., Amsterdam B 60, 371–82.Google Scholar
von Koenigswald, G. H. R. 1960. Tektite studies. II. The distribution of the Indo-Australian tektites. Proc. K. Ned. Akad. Wetens., Amsterdam (B) 63, 142–53.Google Scholar
Kolbe, P., Pinson, W. H. Jr, Saul, J. M. & Miller, E. 1967. Rb-Sr study of country rocks of the Bosumtwi Crater, Ghana. Geochim. cosmochim. Acta 31, 869–75.CrossRefGoogle Scholar
Krinov, E. L. 1958. Some considerations on tektites. Geochim. cosmochim. Acta 14, 259–66.Google Scholar
Krinov, E. L. (trans I. Vidzunias). 1960. Principles of Meteoritics. Oxford: Pergamon Press.Google Scholar
Kulik, L. A. 1933. Résultats préliminaires des expeditions méteoritiques des années 1921–31. Akad. Nauk SSSR, Lomonosovskogo Inst. Geokhimii Kristallographii Mineralogii, Trudy 2, 7381.Google Scholar
Lacroix, A. 1934. Sur la découverte de tectites à la Côte d'Ivoire. C. r. hebd. Séanc. Acad. Sci., Paris, 199, 1539–42.Google Scholar
Lacroix, A. 1935. Les Tectites san formes figurées de l'Indochine C. r. hebd. Séanc. Acad. Sci., Paris 200, 2129–32.Google Scholar
La Paz, L. 1938. The great circle distribution of tektites. Pop. Astron. 46, 224–30.Google Scholar
La Paz, L. 1944. On the origin of tektites. Pop. Astron. 52, 194200.Google Scholar
Lin, S. C. 1966. Cometary impact and the origin of tektites. J. geophys. Res. 71, 2427–37.CrossRefGoogle Scholar
Lin, S. C. 1967. Reply [to D. R. Chapman and D. E. Gault]. J. geophys. Res. 72, 2700–3.CrossRefGoogle Scholar
Lippolt, H. J. & Wasserburg, G. J. 1966. Rubidium-Strontium Messungen an Gläsern vom Bosumtwi-Krater und an Elfenbein-Kusten Tektiten. Z. Naturforsch. 21a, 226–31.CrossRefGoogle Scholar
Lovering, J. F., Mason, B., Williams, G. E. & McColl, D. H. 1972. Stratigraphical evidence for the terrestrial age of Australites. J. geol. Soc. Aust. 18, 409–18.CrossRefGoogle Scholar
Maclaren, M. 1931. Lake Bosumtwi, Ashanti. Geogrl J. 78, 270–6.CrossRefGoogle Scholar
McCall, G. J. H. 1965. The heaviest recorded australite, Austral. J. Sci. 27, 267.Google Scholar
McColl, D. H. & Williams, G. E. 1970. Australite distribution pattern in Southern Central Australia. Nature, Lond. 226, 154–5.CrossRefGoogle ScholarPubMed
Mayer, J. 1788. Ueber die Böhmischen Gallmeyarten, die grüne Erde Mineralogen, die Chrysolithen von Thein und die Steinart von Kuchel. Böhmischen Gesell. Wiss. Abh. Jahr. 1787, pp. 265–8.Google Scholar
Menard, H. W. 1973. Depth anomalies and the bobbing motion of drifting islands. J. geophys. Res. 78, 5128–36.CrossRefGoogle Scholar
Mills, A. A. 1969. Fluidization phenomena and possible implications for the origin of lunar craters. Nature, Lond. 224, 863–6.CrossRefGoogle Scholar
Monod, I. 1954. sur quelques accidents circulaires ou cratériformes du Sahara occidental. C. r. Int. Geol. Congr., 19th Algiers, pt. 20, 8593.Google Scholar
Monod, T. & Pourquié, A. 1951. Le cratère Aouelloul (Adrar, Sahara occidental). Bull. Inst. Français Afrique Noire 13, 294311.Google Scholar
Nininger, H. H. 1940. The moon as a source of tektites. Am. Miner. 26, 199.Google Scholar
O'Keefe, J. A. 1963. The origin of tektites. In Tektites, O'Keefe, J. A., pp. 167–88. Chicago: University of Chicago Press.Google ScholarPubMed
O'Keefe, J. A. 1970. Tektite glass in Apollo 12 sample. Science, N.Y. 168, 1209–10.CrossRefGoogle ScholarPubMed
O'Keefe, J. A. 1971. (Reply to paper by H. C. Urey.) Science, N.Y. 171, 313–14.CrossRefGoogle Scholar
O'Keefe, J. A. 1976. Tektites and Their Origin. Developments in Petrology, 4. Amsterdam: Elsevier.Google Scholar
Oxburgh, E. R. & Turcotte, D. L. 1974. Membrane tectonics and the East African Rift. Earth Planet Sci. Lett. 22, 133–40.CrossRefGoogle Scholar
Reynolds, J. H. 1960. Rare gases in tektites Geochim. cosmochim. Acta 20, 101–14.CrossRefGoogle Scholar
Reid, A. M., Park, F. R. & Cohen, A. J. 1964. Synthetic metallic spherules in a Philippine tektite. Geochim. cosmochim. Acta 28, 1009–10.CrossRefGoogle Scholar
Rohleder, H. P. T. 1936. Lake Bosumtwi, Ashanti. Geogrl. J. 87, 5165.CrossRefGoogle Scholar
Rosičky, V. 1935. Über den Ursprung der Tektitoberfläche. Zentbl. Miner. Geol. Paläont 9, 270–7.Google Scholar
Rost, R. 1964. Surfaces and inclusions in moldavites. Geochim. cosmochim. Acta 28, 931–6.CrossRefGoogle Scholar
Rost, R. 1969. Sculpturing of moldavites and the problem of the micromoldavites. J. geophys. Res. 74, 6816–24.CrossRefGoogle Scholar
Rybach, L. & Adams, J. A. S., 1969. The radioactivity of the Ivory Coast tektites and the formation of the Bosumtwi crater (ghana). Geochim. cosmochim. Acta 33, 1101–2.CrossRefGoogle Scholar
Saurin, E. 1935. Sur quelques gisements de tectites d'l'Indochine du Sud. C. r. hebd. Séanc. Acad. Sci., Paris 200, 246–8.Google Scholar
Saul, J. M. 1964. Field investigations at Lake Bosumtwi (Ghana) and in the Ivory Coast strewn field. Rep. Natl. geog. Soc. Res. 1964, 201–12.Google Scholar
Schmidt, R. A. 1962. Australites and Antarctica. Science, N.Y. 138, 443–4.CrossRefGoogle ScholarPubMed
Schnetzler, C. C., Pinson, W. H. Jr & Hurley, P. M. 1966. Rubidium-strontium age of the Bosumtwi crater, Ghana, compared with the age of the Ivory Coast tektites. Science, N.Y. 151, 817–19.CrossRefGoogle ScholarPubMed
Schnetzler, C. C., Philpotts, J. A. & Thomas, H. H. 1967. Rare-earth and barium abundances in Ivory Coast tektites and rocks from the Bosumtwi crater area, Ghana. Geochim. cosmochim. Acta 31, 1987–93.CrossRefGoogle Scholar
Shima, M. 1966. Glassy spherules (Microtektites?) found in ice at Scott Base, Antarctica. J. geophys. Res. 71, 3595–6.CrossRefGoogle Scholar
Shoemaker, E. M. & Chao, E. C. T. 1961. New evidence for the impact origin of the Ries Basin, Bavaria, Germany. J. geophys. Res. 66, 3371–8.CrossRefGoogle Scholar
Smith, W. C. & Hey, M. H. 1952. The silica-glass from the crater of Aouelloul (Adrar, western Sahara). Bull. Inst. Français Afrique Noire 14, 726–76.Google Scholar
Snyder, F. G. & Gerdemann, P. E. 1965. Explosive igneous activity along an Illinois-Missouri-Kansas axis. Am. J. Sci. 263, 465–93.CrossRefGoogle Scholar
Spencer, L. J. 1933. Origin of tektites. Nature, Lond. 131, 117–18, 876.CrossRefGoogle Scholar
Starik, F. E., Sobotovitch, E. V., Shats, M. M. & Lovtsyus, G. P. 1961. Uranium and lead in tektites. Meteoritika 20, 204–7 (in Russian).Google Scholar
Steed, R. H. N. & Drewry, D. J. 1977. Geophysical investigations of the northern margin of the Wilkes Sub-glacial Basin, adjacent terrain and associations with southern Australia. Abs. Third Symp. Antarctic Geol. Geophys., Madison, Wisconsin 1977, p. 141.Google Scholar
Stortzer, D. & Gentner, W. 1970. Micromoldavites from the Bavarian molasse (abstract). Meteoritics 5, 225.Google Scholar
Stutzer, O. 1936. ‘Meteor Crater’ (Arizona) u. Nordlinger ries. Z. dt. geol. Ges. 88, 510–23.Google Scholar
Suess, F. E. 1898. Über die Herkunft der Moldavite ans dem Weltraume. K. Akad. Wiss. Wien, Auz. 35, 255–60.Google Scholar
Suess, F. E. 1900. Die Herkunft der Moldavite. Jahrb K.K. Reichanst., Wien 50, 193382.Google Scholar
Suess, F. E. 1914. Rücksan und Neueres über die Tektitfrage. Milt. Geol. Gesell. Wien 7, 51121.Google Scholar
Suess, H. E. 1951. Gas content and age of tektites Geochim cosmochim. Acta 2, 76–9.CrossRefGoogle Scholar
Sun, M. S. 1963. The origin of Asia-Australia tektites. Trans. Am. geophys. Un. 44, 9394.Google Scholar
Taylor, H. P. & Epstein, S. 1966. Oxygen isotope studies of Ivory Coast tektites and impactite glasses from the Bosumtwi Crater, Ghana. Science, N.Y. 153, 173–5.CrossRefGoogle ScholarPubMed
Taylor, S. R. 1962. The chemical composition of australites Geochim. cosmochim. Acta 26, 685922.CrossRefGoogle Scholar
Taylor, S. R. 1969. Criteria for terrestrial origin of australites. Chem. Geol. 4, 451–9.CrossRefGoogle Scholar
Taylor, S. R. 1973. Tektites: A post-Apollo view. Earth Sci. Rev. 9, 101–23.CrossRefGoogle Scholar
Taylor, S. R. & Sachs, M. 1964. Geochemical evidence for the origin of Australites. Geochim. cosmochim. Acta 28, 235–64.CrossRefGoogle Scholar
Taylor, S. R. & Solomon, M. 1964. The geochemistry of Darwin Glass. Geochim. cosmochim. Acta 28, 471–94.CrossRefGoogle Scholar
Tilton, G. R. 1958. Isotopic composition of lead from tektites. Geochim. cosmochim. Acta 14, 323–30.CrossRefGoogle Scholar
Urey, H. C., 1955. On the origin of tektites. proc. natn. Acad. Sci. U.S.A. 41, 2731.CrossRefGoogle ScholarPubMed
Urey, H. C. 1957. Origin of tektites. Nature, Lond. 179, 556–7.CrossRefGoogle Scholar
Urey, H. C. 1971. Tektites from the Earth. Science, N.Y. 171, 312–14.CrossRefGoogle ScholarPubMed
Vand, V. 1966. Munro jets and the origin of tektites. Nature, Lond. 197, 228–30.Google Scholar
Verbeek, R. D. M. 1897. Over Glaskögels van Billiton. Verslagen van de vergadering der Wissen Natuurkundige Afdeeling K. Akad. Wetensch. Amsterdam, Verh. 5, 421.Google Scholar
Viste, E. & Anders, E. 1962. Cosmic-ray exposure history of tektites. J. geophys. Res. 67, 2913–9.CrossRefGoogle Scholar
Wager, L. R. 1937. The Arun River drainage pattern and the rise of the Himalaya. Geogrl. J. 89, 239–50.CrossRefGoogle Scholar
Wampler, J. M., Smith, D. H. & Cameron, A. E. 1969. Isotopic comparison of lead in tektites with lead in earth materials. Geochim. cosmochim. Acta 33, 1045–55.CrossRefGoogle Scholar
Weihaupt, J. G. 1976. Evidence for a Giant Antarctic meteorite in Recent geologic time. 25th Int. Geol. Congr., Sydney, Abst. vol. 2, p. 617.Google Scholar
Werner, E. 1904. Das Ries in der Schwäbisch-fränkischen Alb. Blätter der Schwäb. Alvereins 16, 153–67.Google Scholar
Whipple, F. J. 1934. On phenomena related to the great Siberian meteor. Q. Jl Roy. Met. Soc. 60, 505512.CrossRefGoogle Scholar
Zähringer, J. 1963. Isotopes in tektites. In Tektites, (ed. O'Keefe, J. A.) pp. 137149. Chicago: Univ. of Chicago Press.Google Scholar
Zimmermann, R. A. & Amstutz, G. E. 1965. The polygonal structure at Decaturville, Missouri – new tectonic observations. Neues. Jb. Miner. Monatsh., 1965, nos. 9–11, 288307.Google Scholar