Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T15:38:29.308Z Has data issue: false hasContentIssue false

Tectonomagmatic evolution of the South Dehshir Ophiolite, Central Iran

Published online by Cambridge University Press:  07 October 2015

MORTEZA KHALATBARI JAFARI*
Affiliation:
Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran
HADI SEPEHR
Affiliation:
Schools of Geology, College of Science, University of Tehran, Tehran, Iran
KATAYOUN MOBASHER
Affiliation:
University of North Georgia, Institute for Environmental Spatial Analysis, Georgia, US
*
Author for correspondence: [email protected]

Abstract

The South Dehshir Ophiolite, exposed along the southwestern margin of the Central Iranian microcontinent, comprises a mantle and a crustal sequence. This massif contains serpentinized peridotites, gabbros and diabase sheeted dykes cutting across wherlite, pegmatitic gabbro and plagiogranite, and is tectonically covered by radiolarites, pelagic limestones with Late Cretaceous microfauna and lavas. Under a microscope, the gabbros exhibit mesocumulate, adcumulate and hetradcumulate textures presumably formed in open magma chambers. Hypabyssal and lava samples show tholeiitic to calc-alkaline affinities, and their compositions cluster in the fields of arc or supra-subduction zone magmatism. Binary diagrams display compositional trends of magmatic differentiation, plotting away from the mid-ocean-ridge basalt (MORB) (tholeiitic) trend and following the arc (calc-alkaline) trend. Rare Earth element (REE) and spider diagrams display various enrichments at different levels. Moderate enrichment of the large-ion lithophile elements (LILE; Rb, Ba, Th, U, La, Sr) relative to the high-field-strength elements (HFSE; Nb, Ta) and slight depletion of Ti and Zr in some patterns may be attributed to variable influences of subduction components over the depleted mantle wedge. Elemental ratios display evidence for the contribution of both fluids and melt released from the subducted slab. Few patterns display ocean-island basalt (OIB) characteristics, possibly attributed to the involvement of local mantle plumes on the partial melting of the mantle wedge. This evidence indicates that the crustal rocks of the South Dehshir Ophiolite formed in a supra-subduction zone.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghanabati, A. 2004. Major Sedimentary-Structural Units of Iran. Tehran: Geological Survey of Iran.Google Scholar
Amidi, S. M., Aghanabati, S. A., Taraz, H. & Nabavi, M. H. 1983. Geological map of the Abadeh quadrangle, scale 1:250 000. Geological Survey of Iran and Mining Exploration. Sheet G9.Google Scholar
Anonymous. 1972. Penrose field conference on ophiolites. Geotimes 17, 24–5.Google Scholar
Arculus, R. J. 1994. Aspects of magma genesis in arcs. Lithos 33, 189208.CrossRefGoogle Scholar
Beccaluva, L., Coltorti, M., Giunta, G. & Siena, F. 2004. Tethyan vs. Cordilleran ophiolites: a reappraisal of distinctive tectono-magmatic features of supra-subduction complexes in relation to the subduction mode. Tectonophysics 393, 163–74.Google Scholar
Davoudzadeh, M. 1972. Geology and Petrography of the Area North of Nain, Central Iran. Geological Survey of Iran Report no. 14, 89 pp.Google Scholar
Dilek, Y. 2003. Ophiolite concept and its evolution. In Ophiolite Concept and the Evolution of Geological Thought (eds Dilek, Y. & Newcomb, S.), pp. 116. Geological Society of America, Boulder, Special Paper no. 373.CrossRefGoogle Scholar
Dilek, Y. & Furnes, H. 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113, 120.Google Scholar
Dilek, Y., Furnes, H. & Shallo, M. 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research 11, 453–75. doi: 10.1016/j.gr.2007.01.005.Google Scholar
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research 102, 14991–5019.CrossRefGoogle Scholar
Emami, M. H., Sadeghi, M. M. & Omrani, S. J. 1993. Magmatic map of Iran. Scale 1:1 000 000. Geological Survey of Iran and Mining Exploration.Google Scholar
Faustino, D. V., Yumul, G. P. Jr, Dimalanta, J. V., de Jesus, C. B., Aitchison, J. C. & Tamayo, R. A. Jr. 2006. Volcanic hypabyssal rocks geochemistry of a subduction-related marginal basin ophiolite: Southeast Bohol Ophiolite-Cansiwang Melange complex, central Philipines. Geosciences Journal 10, 291303.Google Scholar
Fitton, J. C., Saunders, A. D., Norry, M. J., Hardarson, B. S. & Taylor, R. N. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Sciences Letters 153, 197208.Google Scholar
Hastie, R., Kerr, A. C., Pearce, J. A. & Mitchell, S. F. 2007. Classification of altered island arc rocks using immobile trace elements: development of Th-Co discrimination diagram. Journal of Petrology 48 (12), 234–35.Google Scholar
Hawkins, J. W. & Melchior, J. T. 1985. Petrology of Mariana Trough and Lau Basin basalts. Journal of Geophysical Research 90, 11431–68.Google Scholar
Hermann, J. 2002. Allanite: thorium and light rare earth element carrier in subducted crust. Chemical Geology 192, 289306.Google Scholar
Hochstaedter, A. G., Gill, J. B., Kusakabe, M., Newman, S., Pringle, M., Taylor, B. & Fryer, P. 1990. Volcanism in the Sumisu Rift: Major element, volatile, and stable isotope geochemistry. Earth and Planetary Science Letters 100, 179–94.Google Scholar
Hunter, R. H. 1996. Texture development in cumulate rocks. In Layered Intrusions (ed. Cawthorn, R. G.), pp. 77101. Amsterdam: Elsevier.Google Scholar
Hushmandzadeh, A., Aghanabati, S. A., Ohanian, T., Sahandi, M. R., Taraz, H., Azarm, F., Soheili, M. & Hamidi, M. 1981. Geological map of the Eglid quadrangle, scale 1 :250 000. Geological survey of Iran Sheet G10.Google Scholar
Juteau, T. & Maury, R. 2012. La Croûte Océanique. Pétrologie et Dynamique Endogènes. Paris, Cedex: Vuibert, 13, 582 pp.Google Scholar
Keppler, H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237–40.Google Scholar
Khalatbari Jafari, M., Babaie, H. A. & Gani, M. 2013. Geochemical evidence for Late Cretaceous marginal arc-to-backarc transition in the Sabzevar ophiolitic extrusive sequence, northeast Iran. Journal of Asian Earth Sciences 70–71, 209–30.Google Scholar
Khalatbari jafari, M., Babaie, H. A. & Mirzaie, M. 2013. Geology, petrology and tectonomagmatic evolution of the plutonic crustal rocks of the Sabzevar ophiolite, NE Iran. Geological Magazine 150, 862–84.Google Scholar
Knipper, A., Ricou, L. E. & Dercourt, J. 1986. Ophiolites as indicators of the geodynamic evolution of the Tethyan ocean. Tectonophysics 123, 213–40.Google Scholar
Kocak, K., Isik, M., Arslan, M. & Zedef, V. 2005. Petrological and source region characteristics of ophiolitic hornblende gabbro from the Aksaray and Kayseri region, central Anatolian crystalline complex, Turkey. Journal of Asian Earth Sciences 25, 883–91.Google Scholar
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali silica diagram. Journal of Petrology 27, 745–50.Google Scholar
Mahoney, J. J., Graham, D. W., Christie, D. G., Johnson, K. T. M., Hall, L. S. & VonderHaar, D. L. 2002. Between a hot spot and a cold spot: isotopic variation in the Southeast Indian Ridge asthenosphere, 86–118°E. Journal of Petrology 43, 1155–76.Google Scholar
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical constraints on subduction magmatism. Earth and Planetary Science Letters 102, 358–74.Google Scholar
Mehdipour Ghazi, J., Moazzen, M. & Rahgoshay, M. 2011. Geochemical characteristics of basaltic rocks from the Nain ophiolite; constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model. Tectonophysics 574–5, 92104.Google Scholar
Michael, P. J. & Chase, R. L. 1987. The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation. Contributions to Mineralogy and Petrology 96, 245–64.Google Scholar
Miller, D. M., Goldstein, S. L. & Langmuir, C. H. 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–20.Google Scholar
Munter, O. & Piccardo, G. 2003. Melt migration in ophiolitic peridotites: the message from Alpine-Apennine peridotites and implications for embryonic ocean basins. In Ophiolite Concept and the Evolution of Geological Thought (eds Dilek, Y. & Newcomb, S.), pp. 6988. Geological Society of America, Boulder, Special Paper no. 373.Google Scholar
Nabavi, M. H., Iwao, S. H., Tatevosian, S. H., Valeh, N., Haghipour, A., Pelissier, G. & Bolurchi, M. 1972. Geological map of the Yazd quadrangle, scale 1:250 000. Geological survey of Iran Sheet H9.Google Scholar
Nicholson, K. N., Black, P. M. & Picard, C. 2000. Geochemistry and tectonic significance of the Tangihua ophiolite complex, New Zealand. Tectonophysics 321, 115.Google Scholar
Nicolas, A. 1989. Structures of Ophiolites and Dynamic of Oceanic Lithosphere. Petrology and Structural Geology. Dordrecht, Boston, London: Kluwer Academic Press, 387 pp.Google Scholar
Nicolas, A. & Boudier, F. 2009. Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros. Earth and Planetary Science Letters 284, 7687.Google Scholar
Niu, Y. & Batiza, R. 1997. Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle. Earth and Planetary Science Letters 148, 471–83.Google Scholar
Pearce, J. A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In Andesites, Orogenic Andesites and Related Rocks (ed. Thorpe, R. S.), pp. 528–48. New York: John Wiley & Sons.Google Scholar
Pearce, J. A. 2003. Supra-subduction zone ophiolites: The search for modern analogues. In Ophiolites Concept and Evolution of Geological Thought (eds Dilek, Y. & Newcomb, S.), pp. 269–93. Geological Society of America, Boulder, Special Paper no. 373.Google Scholar
Pearce, J. A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean ocanic crust. Lithos 100, 1448.Google Scholar
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251–85.Google Scholar
Pearce, J. A., Stern, R. J., Bloomer, S. H. & Fryer, P. 2005. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems 6, Q07006.Google Scholar
Rayan, J. G., Morris, J., Tera, F., Leeman, W. P. & Tsvetkov, A. 1995. Cross-arc geochemical variations in the Kurile Arc as a function of slab depth. Science 270, 625–27.Google Scholar
Rehkämper, M. & Hofmann, A. W. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters 147, 93106.Google Scholar
Robertson, A. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 167.CrossRefGoogle Scholar
Rowshan Ravan, J., Sabzehei, M. & Nazemzadeh Shoaii, M. 1997. Geological map of the Dehshir quadrangle, scale 1:100 000. Geological Survey of Iran and Mining Exploration. Sheet 6752.Google Scholar
Saccani, E. & Photiades, A. 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a fore arc setting. Lithos 73, 229–53.Google Scholar
Shafaii Moghadam, H., Corfu, F. & Stern, R. 2013. U-Pb zircon ages of Late Cretaceous Nain-Dehshir ophiolites, central Iran. Journal of the Geological Society of London 170, 175184. doi: 10.1144/jgs2012-066.Google Scholar
Shafaii Moghadam, H. & Stern, R. J. 2011. Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geological Magazine 148, 762801.Google Scholar
Shafaii Moghadam, H., Stern, R. J. & Rahgoshay, M. 2010. The Dehshir ophiolite (central Iran): geochemical constraints on the origin and evolution of the inner Zagros ophiolitic belt. Geological Society of America Bulletin 122, 1516–67.Google Scholar
Shafaii Moghadam, H., Whitechurch, H., Rahgoshay, M. & Monsef, I. 2009. Significance of Nain-Baft ophiolitic belt (Iran): Short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. Comptes Rendus Geoscience 341, 1016–28.Google Scholar
Shervais, J. W., Kimbrough, D. L., Renne, P., Hanan, B. B., Murchey, B., Snow, C. A., Schuman, M. M. Z. & Beaman, J. 2007. Multi-stage origin of the Coast Range Ophiolite, California: implications for the life cycle of supra-subduction zone ophiolites. International Geology Review 46, 289315.Google Scholar
Soheili, M. & Yugoslavian groups. 1981. Geological map of the Anar quadrangle, scale 1: 250 000. Geological Survey of Iran, Sheet H10.Google Scholar
Soltanmohammadi, A., Rahgoshay, M. & Khalatbari Jafari, M. K. 2009. Petrogenesis of volcanic rocks in the Khabr-Marvast tectonized ophiolite: Evidence for subduction processes in the south-western margin of central Iranian microcontinent. Acta Geologica Sinica 83 (5), 884–92.Google Scholar
Stern, R. J. & Bloomer, S. H. 1992. Subduction zone infancy: Examples from the Eocene Izu– Bonine–Mariana and Jurassic California arcs. Geological Society of America Bulletin 104, 1621–36.Google Scholar
Stern, R. J., Kohut, E. J., Bloomer, S. H., Leybourne, M., Fouch, M. & Vervoot, J. 2006. Subduction factory processes beneath the Guguan cross-chin, Mariana Arc: no role for sediments, are serpentinites important? Contribution to Mineralogy and Petrology 151 (2), 202–21. doi:10.1007/s00410-005-2.Google Scholar
Stöcklin, J. 1968. Structural history and tectonics of Iran, a review. AAPG Bulletin 52 (7), 1229–58.Google Scholar
Stöcklin, J. 1974. Possible ancient continental margins in Iran. In The Geology of Continental Margins (eds Burke, C. A. & Drake, C. L.), pp. 873–87. Berlin: Springer.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313345. Geological Society of London, Special Publication no. 42.Google Scholar
Tian, L., Castillo, P. L., Hawkins, J. W., Hilton, D. L., Hanan, B. B. & Pietruszka, A. J. 2008. Major and trace element and Sr–Nd isotope signatures of lavas from the Central Lau Basin: implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research 178, 657–70.Google Scholar
Tian, L., Castillo, P. R., Hilton, D. H., Hawkins, J. W., Hanan, B. B., Aaron, J. & Pietruszka, A. J. 2011. Major and trace element and Sr-Nd isotope signatures of the northern Lau Basin lavas: implications for the composition and dynamics of the back-arc basin mantle. Journal of Geophysical Research 116, B11201. doi: 10.1029/2011JB008791.Google Scholar
Turner, S. P. & Hawkesworth, C. J. 1997. Constraints on flux rates and mantle geodynamics beneath island arcs from Tonga–Kermadec lava geochemistry. Nature 389, 568–73.Google Scholar
Winter, J. D. 2001. An introduction to igneous and metamorphic petrology. New Jersey: Prentice-Hall Inc., 697 pp.Google Scholar
Wood, D. A. 1980. The applications of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters 50, 1130.Google Scholar
You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H. & Spivack, A. J. 1996. Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zone. Earth and Planetary Science Letters 140, 4152.Google Scholar