Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:14:12.424Z Has data issue: false hasContentIssue false

Borings in phosphatized Cambrian siltstone pebbles, Estonia (Baltica)

Published online by Cambridge University Press:  20 November 2015

OLEV VINN*
Affiliation:
Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
URSULA TOOM
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
*
Author for correspondence: [email protected]

Abstract

The earliest known macroborings (Trypanites) from Baltica occur in early Cambrian phosphatized siltstone pebbles from Kopli quarry in Tallinn, Estonia. Trypanites borings also occur in Furongian phosphatized siltstone pebbles in northern Estonia. The intensity of bioerosion on these Cambrian pebbles is low compared to analogue substrates from Ordovician deposits of Baltica. These bored phosphatized siltstone pebbles show that bioerosion of hard substrates occurred in relatively cold climate epicontinental seas during Cambrian time.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allouc, J., Le Campion-Alsumard, T. & Leung Tack, D. 1996. La bioérosion des substrats magmatiques en milieu littoral: l’exemple de la presqu’ile du Cap Vert (Sénégal Occidental). Geobios 29, 485502.CrossRefGoogle Scholar
Baarli, B. G., Santos, A., Mayoral, E., Ledesma Vázquez, J., Johnson, M. E., Silva, C. M. da & Cachao, M. 2013. What Darwin did not see: Pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geological Magazine 150, 183–9.CrossRefGoogle Scholar
Bengtson, S. & Yue, Z. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science 257, 367–9.Google Scholar
Brett, C. E. & Liddell, W. D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology 4, 329–48.Google Scholar
Brett, C. E., Liddell, W. D. & Derstler, K. G. 1983. Late Cambrian hard substrate communities from Montana/Wyoming: The oldest known hardground encrusters. Lethaia 16, 281–9.CrossRefGoogle Scholar
Bromley, R. G. 1972. On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläontologische Zeitschrift 46, 93–8.CrossRefGoogle Scholar
Chow, N. & James, N. P. 1992. Synsedimentary diagenesis of Cambrian peritidal carbonates: evidence from hardgrounds and surface paleokarst in the Port au Port Group, western Newfoundland. Bulletin of Canadian Petroleum Geology 40, 115–27.Google Scholar
Conway Morris, S. & Bengtson, S. 1994. Cambrian predators; possible evidence from boreholes. Journal of Paleontology 68, 123.CrossRefGoogle Scholar
Ekdale, A. A. & Bromley, R. G. 2001. Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia 34, 112.CrossRefGoogle Scholar
James, N. P., Kobluk, D. R. & Pemberton, S. G. 1977. The oldest macroborers: Lower Cambrian of Labrador. Science 197, 980–83.Google Scholar
Johnson, M. E. & Baarli, B. G. 2012. Development of intertidal biotas though Phanerozoic time. In Earth and Life (ed. Talent, J. A.), pp. 63128. Dordrecht: Springer.Google Scholar
Johnson, M. E., Wilson, M. A. & Redden, J. A. 2010. Borings in quartzite surf boulders from the Upper Cambrian Basal Deadwood Formation, Black Hills of South Dakota. Ichnos 17, 4855.Google Scholar
Kobluk, D. R. 1981 a. Lower Cambrian cavity-dwelling endolithic (boring) sponges. Canadian Journal of Earth Sciences 18, 972–80.Google Scholar
Kobluk, D. R. 1981 b. Earliest cavity-dwelling organisms (coelobionts), Lower Cambrian Poleta Formation, Nevada. Canadian Journal of Earth Sciences 18, 669–79.Google Scholar
Kobluk, D. R. & James, N. P. 1979. Cavity-dwelling organisms in Lower Cambrian patch reefs from southern Labrador. Lethaia 12, 193218.Google Scholar
Kobluk, D. R., James, N. P. & Pemberton, S. G. 1978. Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the lower Paleozoic. Paleobiology 4, 163–70.Google Scholar
Mägdefrau, K. 1932. Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift 14, 150–60.CrossRefGoogle Scholar
Mens, K., Viira, V., Paalits, I. & Puura, I. 1989. Cambrian-Ordovician boundary beds at Mäekalda, Tallinn, North Estonia. Proceedings of the Estonian Academy of Sciences, Geology 38, 101–11.CrossRefGoogle Scholar
Mikuláš, R., Nemecková, M. & Adamovic, J. 2002. Bioerosion and bioturbation of a weathered metavolcanic rock (Cretaceous, Czech Republic). Acta Geologica Hispanica 37, 2127.Google Scholar
Nield, E. W. 1984. The boring of Silurian stromatoporoids–towards an understanding of larval behavior in the Trypanites organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 48, 229–43.Google Scholar
Palmer, T. J. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia 15, 309–23.Google Scholar
Pirrus, E. 1984. Stop 2:1 - The Kopli quarry. International Geological Congress, XXVII Session. Excursions 027, 028 Guidebook. Tallinn, pp. 4042.Google Scholar
Raukas, A. & Teedumäe, A. 1997. Geology and Mineral Resources of Estonia. Tallinn: Estonian Academy Publishers, 436 pp.Google Scholar
Rodríguez-Tovar, F., Uchman, A. & Puga-Bernabéu, A. 2015. Borings in gneiss boulders in the Miocene (Upper Tortonian) of the Sorbas Basin, SE Spain. Geological Magazine 152, 287–97.CrossRefGoogle Scholar
Santos, A., Mayoral, E., Johnson, M. E., Gudveig Baarli, B., Cachao, M., Silva, C. M. da & Ledesma Vázquez, J. 2012. Extreme habitat adaptation by boring bivalves on volcanically active paleoshores from North Atlantic Macaronesia. Facies 58, 325–38.Google Scholar
Sepkoski, J. J. Jr. 1982. Flat pebble conglomerates, storm deposits and Cambrian bottom fauna. In Cyclic and Event Stratification (eds Einsele, G. & Seilacher, A.), pp. 371–85. Berlin: Springer-Verlag.Google Scholar
Tapanila, L., Copper, P. & Edinger, E. 2004. Environmental and substrate controls on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, eastern Canada. Palaios 19, 292306.Google Scholar
Taylor, P. D. & Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth Science Reviews 62, 1103.Google Scholar
Torsvik, T. H., Smethurst, M. A., van der Voo, R., Trench, A., Abrahamsen, N. & Halvorsen, E. 1992. Baltica. A synopsis of Vendian–Permian palaeomagnetic data and their palaeotectonic implications. Earth Science Reviews 33, 133–52.Google Scholar
Vinn, O. 2006. Possible cnidarian affinities of Torellella (Hyolithelminthes, Upper Cambrian, Estonia). Paläontologische Zeitschrift 80, 384–9.Google Scholar
Vinn, O. & Wilson, M. A. 2010. Early large borings from a hardground of Floian-Dapingian age (Early and Middle Ordovician) in northeastern Estonia (Baltica). Carnets de Géologie, CG2010_L04.Google Scholar
Vinn, O., Wilson, M. A. & Mõtus, M.-A. 2014. The earliest giant Osprioneides borings from the Sandbian (Late Ordovician) of Estonia. PLoS ONE 9 (6), e99455.Google Scholar
Wilson, M. A. 1987. Ecological dynamics on pebbles, cobbles and boulders. Palaios 2, 594–9.CrossRefGoogle Scholar
Wilson, M. A. & Palmer, T. J. 2006. Patterns and processes in the Ordovician Bioerosion Revolution. Ichnos 13, 109–12.Google Scholar
Zonneveld, J.-P. & Murray, K. G. 2014. Sedilichnus, Oichnus, Fossichnus, and Tremichnus: small round holes in shells revisited. Journal of Paleontology 88, 895905.Google Scholar