Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T00:46:33.815Z Has data issue: false hasContentIssue false

On Mayer's conjecture and zeros of entire functions

Published online by Cambridge University Press:  19 September 2008

G. Levin
Affiliation:
Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, 91904, Jerusalem, Israel

Abstract

We study the spectrum of a transfer operator that gives a counterexample to the conjecture of Mayer. The effect of perturbations is considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[I]Beardon, A.. Iteration of Rational Functions. Springer: Berlin, 1991.CrossRefGoogle Scholar
[2]Douady, A. and Hubbard, J.H.. Iteration des polynomes quadratiques complexes. CR Acad. Sci. Paris. 294 (1982), 123126.Google Scholar
[3]Denker, M. and Urbanski, M.. Ergodic theory of equilibrium states for rational maps. Nonlinearity 4 (1991), 103134.CrossRefGoogle Scholar
[4]Fried, D.. The zeta functions of Ruelle and Selberg I. Ann. Sci. E. N.S. 19 (1986), 491517.Google Scholar
[5]Hardy, G.H.. On the zeroes of a class of integral functions. Messengerof Mathematics 34 (1905), 97101.Google Scholar
[6]Levin, B. Ya. Distribution of Zeros of Entire Functions. American Mathematical Society: Providence, RI, 1964.CrossRefGoogle Scholar
[7]Levin, G., Sodin, M. and Yuditskii, P.. A Ruelle operator for a real Julia set. Commun. Math. Phys. 141 (1991), 119132.CrossRefGoogle Scholar
[8]Levin, G., Sodin, M. and Yuditskii, P.. Ruelle operators with rational weights for Julia sets. J. d'Analyse Math. To appear.Google Scholar
[9]Mayer, D.H.. On the location of poles of Ruelle's zeta function for Gauss' map. Dynamical Systems and Ergodic Theory. Vol. 23. Banach Center Publications: Warsaw, 1989. pp. 101111.Google Scholar
[10]Przytycki, F.. On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Holder continuous functions. Bol. Soc. Bras. Mat. 20 (1990), 95125.CrossRefGoogle Scholar
[II]Ruelle, D.. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34 (1976), 231242.CrossRefGoogle Scholar
[12]Ruelle, D.. Thermodynamic Formalism. Addison-Wesley: New York, 1978.Google Scholar
[13]Ruelle, D.. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2 (1982), 99107.CrossRefGoogle Scholar
[14]Ruelle, D.. The termodynamic formalism for expanding maps. Commun. Math. Phys. 125 (1989), 239262.CrossRefGoogle Scholar
[15]Ruelle, D.. Spectral properties of a class of operators associated with conformal maps in two dimensions. Commun. Math. Phys. 144 (1992), 537556.CrossRefGoogle Scholar