The rheology of aqueous suspensions of Na halloysites with different particle shape has been investigated using a Haake rotary viscometer. Three halloysites from New Zealand were used: Matauri Bay (MB), Te Akatea (TA) and Opotiki (Op) which are mainly composed of thick long tubules, short thin laths, and spherules, respectively. Suspensions of the materials subsequently prepared from the MB and TA samples show a pseudoplastic consistency under shear, characterized by a steep initial rise in shear stress as shear rate increases, followed by a linear increase in stress when a certain shear rate is exceeded. The Op halloysite, on the other hand, shows Newtonian flow behaviour for which shear stress increases linearly with shear rate throughout. For MB and TA, the shear stress developed during rotor acceleration is larger than that produced during deceleration, and the corresponding flow curves enclose a hysteresis loop. As suspension pH increases, the pseudoplastic character decreases as does the amount of hysteresis. Above pH 7.5, flow approaches Newtonian and hysteresis is absent. Plots of Bingham yield value against pH at different ionic strengths (0.003, 0.03 and 0.3 M NaCl) intersect at pH 6.0 for MB and at pH 7.1 for TA. These values are identified with the point of zero charge (PZC) of the particle edge surface. The flow characteristics of halloysites may be explained in terms of the influence of particle shape, pH, electrolyte concentrations, and layer composition on particle interactions.