Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:06:52.008Z Has data issue: false hasContentIssue false

Clay mineral variations associated with diagenesis and low-grade metamorphism of Early Cretaceous sediments in the Cameros Basin, Spain

Published online by Cambridge University Press:  09 July 2018

J. F. Barrenechea
Affiliation:
Dpto. de Cristalografia y Mineralogia, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, 28040 Madrid
M. Rodas
Affiliation:
Dpto. de Cristalografia y Mineralogia, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, 28040 Madrid
J. R. Mas
Affiliation:
Dpto. de Estratigrafia, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

The clay mineral distribution in the Early Cretaceous depositional sequences along the Cameros Basin has been established on the basis of XRD traces and TEM/EDAX analyses. Samples from the Latest Berriasian-Barremian depositional sequences are characteristic of epimetamorphic conditions. Illite ‘crystallinities’ are broader than expected (0.35–0.490°Δ2θ), due to the consistent presence of K-mica-paragonite mixed-layer and discrete paragonite associated with the illite 10 Å peak. The Late Barremian-Early Aptian depositional sequence, around the depocentral sector of the basin, represents a sudden change to anchimetamorphic conditions, marked by the presence of pyrophyllite and rectorite and by a significant decrease in the A1IV content of the chlorites. Towards the northwestern border of the basin, this sequence was affected by deep diagenetic conditions, as deduced from the clay mineral association and the ‘crystallinity’ values (0.57°Δ2θ). The changes in the clay mineral assemblages and ‘crystallinity’ data can hardly be explained in terms of the varying burial depth and are related to changes in the circulation of fluids associated with varying facies (modal composition, grain size). Permeability is regarded as the main factor controlling the circulation of these migratory fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, O.E. & Brime, C. (1990) Mineralogy, geochemistry and origin of the underclays of the Central Coal Basin, Asturias, Spain. Clays Clay Miner. 38, 265276.Google Scholar
Alonso, A. & MAS, J.R. (1992) Control tectónico e influencia del eustatismo en la sedimentación del Cretàicico inferior de la Cuenca de Los Cameros. Cuadernos de Geología Ibérica, 17, 285310.Google Scholar
Arkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Paleozoic and Mesozoic rocks of northeast Hungary. J. Metam. Geol. 9, 723734.Google Scholar
Arkai, P. & Lelkes Felvary, G.Y. (1993) The effects of lithology, bulk chemistry and modal composition on illite ‘crystallinity’ — A case study from the Bakony Mts., Hungary. Clay Miner. 28, 417433.Google Scholar
Barrenechea, J.F., Rodas, M. & Arche, A. (1992) Relation between graphitization of organic matter and clay mineralogy, Silurian black shales in Central Spain. Mineral. Mag. 56, 477485.Google Scholar
Beuther, A. (1965) Geologische untersuchungen in Wealden und Utrillas. Schichten im Westteil der Sierra de los Cameros (Nordwesflich Iberischen Ketten). Geologisches Jahrbuch Biehefte, 44, 103485.Google Scholar
Blenkisop, T.G. (1988) Definition of low-grade meta-morphic zones using illite crystallinity. J. Metam. Geol. 6, 623-636.Google Scholar
Casas Sainz, A.M. & Simon Gomez, J.L. (1992) Stress field and thrust kinematics: a model for the tectonic inversion of the Cameros Massif (Spain). J. Struct. Geol. 14, 521530.Google Scholar
Casquet, C., Galindo, C., Gonzalez Casado, J.M., Alonso, A., MAS, R., Rodas, M., Garcia, E. & Barrenechea, J.F. (1992) E1 metamorfismo en la Cuenca de los Cameros. Geocronología e implica-ciones tectónicas. Geogaceta, 11, 2225.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23, 471485.Google Scholar
Clemente, P. & Alonso, A. (1990) Estratigrafía y sedimentología de las facies continentales del Cretàcico inferior en el borde meridional de la Cuenca de Los Cameros. Estudios Geológicos, 45, 90109.Google Scholar
Duba, D. & William-jones, A.E. (1983) The application of illite crystallinity, organic matter reflectance and isotopic techniques to mineral exploration: a case study in southwestern Gaspé, Quebec. Econ. Geol. 78, 13501363.Google Scholar
Frey, M. (1969) The step from diagenesis to metamorph-ism in pelitic rocks during Alpine Orogenesis. Sedimentology, 15, 261279.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 958 in Low-Temperature Metamorphism (Frey, M., editor). Blackie & Sons, Glasgow.Google Scholar
Golberg, J.M., Guirauo, M., Maluski, H. & Seguret, M. (1988) Caractéres pétrologiques et âge du metamor-phisme en contexte distensif du bassin sur décroche-ment de Sofia (Crétacé inferieur, Nord Espagne). C. R. Acad. Sci. Paris, 307, 521527.Google Scholar
Guidotti, C.V., Mazzoli, C., Sassi, F.P. & Blencoe, J.G. (1992) Compositional controls on the cell dimensions of 2M1 muscovite and paragonite. Eur. J. Mineral. 4, 283297.Google Scholar
Guimera, J. & Alvaro, M. (1990) Structure et evolution de la compression alpine dans le Chaîne Ibériqueet la Chaiîne Cotiére Catalane (Espagne). Bull Soc. Geol. France, 8, VI (2), 339340.Google Scholar
Gumaud, M. (1983) Evolution tectono-sédimentaire du basin Wealdien (Crétacé inférieur) en relais de décrochements de Logrono-Soria (NW Espagne). 3 eme cycle thesis Montpellier, Univ. des Sciences et Techniques de Lanquedoc, France.Google Scholar
Guiraud, M. & Seguret, M. (1985) A realising solitary overstep model for the Late Jurassic-Early Cretaceous (Wealdian) Sofia strike-slip basin (Northern Spain). SEPM Special Publ. 37, 159175.Google Scholar
Hayes, J.B. (1970) Polytypism of chlorite in sedimentary rocks. Clays Clay Miner. 18, 285306.Google Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner. 26, 149—168.Google Scholar
Jahren, J.S. (1991) Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway. Clay Miner. 26, 169178.Google Scholar
Jahren, J.S. & Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationship with formation-water chemistry. Clay Miner. 24, 157170.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289493 in: Diagenesis in Sediments and Sedimentary Rocks, Vol. 2, (Larsen, G. & Chilingar, G.V., editors) Elsevier, Amsterdam.Google Scholar
kisch, H.J. (1987) Correlation between indicators of very low-grade metamorphism. Pp. 301304 in: Low-Temperature Metamorphism,(Frey, M., editor). Blackie & Sons, Glasgow.Google Scholar
kiscn, H.J. (1990) Calibration of the anchizone: a critical comparison of illite ‘crystallinity’ scales used for definition. J. Metam. Geol., 8, 3146.Google Scholar
kiscn, H.J. & Frey, M. (1987) Appendix: Effect of sample preparation on the measured 10 Å peak width of illite ‘crystallinity'. Pp. 301304 in: Low-Temperature Metamorphism,(Frey, M., editor). Blackie & Sons, Glasgow.Google Scholar
Krumm, S. & Buggisch, W. (1991) Sample preparation effects on illite crystallinity measurement: grain-size gradation and particle orientation. J. Metam. Geol. 9, 671677.Google Scholar
Kobler, B. (1967) La cristallinité de l'illite et les zones tout à fait supérieures du métamorphisme. Etages Techtoniques, Coll Neuchâtel, 105122.Google Scholar
Le Corre, C. (1975) Analyse comparée de la cristallinité dans le Briovérian et le Paléozoique centre-armor-icains: zonéographie et structure d'un domaine Epizonal. Bull. Geól. de France 7e serie, 547553.Google Scholar
MAS, J.R., Alonso, A. & Guimera, J. (1993) Evolución tectonosedimentaria de una cuenca extensional intraplaca: la cuenca finijurálsica-eocretáicica de Los Cameros (La Rioja-Soria). Rev. Soc. Geol. España 6, 129144.Google Scholar
Mata, P., Perez Lorente, F., Soriano, J, & Lopez-acuayo, F. (1990) Caracterización de los cloritoides de la Sierra de Los Cameros (Soria-La Rioja): primeros datos analíticos. Bol. Soc. Esp. Mineral. 13, 3541.Google Scholar
Maxwell, D.T. & Hower, J. (1967) High-grade diagen-esis and low-grade metamorphism of illite in the Precambrian Belt series. Am. Miner. 52, 843857.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249304 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Miner. 18, 2536.Google Scholar
Roberts, B. & Merriman, R.J. (1985) The distinction between Caledonian burial and regional meta-morphism in metapelites from North Wales: an analysis of isocryst patterns. J. Geol. Soc., London, 146, 885-888.Google Scholar
Roberts, B., Merriman, R.J. & Pratt, W. (1991) The influence of strain, lithology and stratigraphical depth on white mica (illite) crystallinity in mudrocks from the vicinity of the Corris Slate Belt, Wales: implications for the timing of metamorphism in the Welsh Basin. GeoL Mag. 128, 633-645.Google Scholar
Robinson, D. (1987) Transition from diagenesis to metamorphism in extensional and collision settings. Geology, 15, 866869.Google Scholar
Robinson, D. & Bevins, R.E. (1989) Diastathermal (extensional) metamorphism at very low grades and possible high grade analogues. Earth Planet. Sci. Lett. 92, 8188.Google Scholar
Robinson, D., Warr, L.N. & Bevins, R.E. (1990) The illite ‘crystallinity’ technique: a critical appraisal of its precision. J. Metam. Geol. 8, 333344.Google Scholar
Saunas, F.J. & MAS, J.R. (1990) Estudio sedimentológico y tectosedimentario de la Cnbeta de Cervera del Río Alhama (La Rioja) durante la sedimentación del Gmpo Urbión (Cretáicico Inferior). Estudios Geoló-gicos, 46, 245255.Google Scholar
Salomon, J. (1982) Les formations continentales du Jurassique supérieur-Crétace inférieur en Espagne du Nord (Chaine Cantabrique et NW Ibérique). Mém-oire Geologique Université Dijon 6, 228 pp.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierce-Shale. U. S. Geol. Surv. Prof Pap. 391-C.Google Scholar
Tischer, G. (1965) Uber die Wealden-Ablagerung und die Tektonik der ostlichen de los Cameros in den nordwestlichen lberischen Ketten (Spanien). Geolo-gisches Jahrbuch Biehefte, 44, 123164.Google Scholar
Wiewiora, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Miner. 25, 8392.Google Scholar
Yang, C. & Hesse, R. (1991) Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, External Domain of southern Canadian Appalachians. Clay Miner. 26, 211231.Google Scholar