Article contents
Approximation of Lp-Contractions by Isometries
Published online by Cambridge University Press: 20 November 2018
Abstract
We construct a positive linear contraction T of all LP(X, μ)- spaces, 1 ≦ p ≦ ∞, μ(X) = 1 such that T1 = 1, T* 1 = 1 and also Tf > 0 a.e. for all f ≧ 0 a.e., f ≢ 0 but for which there is an f ∊ L∞ such that (Tnf — ∫ fdμ) does not converge in L1-norm. We also show that if T is a contraction of a Hilbert space H, there exists an isometry Q and a contraction R such that ∥Tnx - QnRx∥ —> 0 as n —» ∞ for all x in H
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1989
References
- 1
- Cited by