In 1955 Taylor [6] constructed an AP-integral sufficiently strong to integrate Abel summable series with coefficients o(n). He showed that the AP-integral includes the special Denjoy integral and further that, when applied to trigonometric series, the AP-integral is more powerful than the SCP-integral of Burkill [1] and the P2-integral of James [3]. The present paper shows that the AP-integral includes the SCP-integral, and, under natural assumptions, the P2-integral.
After completing this manuscript I was advised by Skvorcov that he had shown [5] under more general conditions that the P2-integral is included in the AP-integral. The proof in the present paper seems to have some value in its own right and is considerably shorter.
Since the definition of the AP-integral is essentially for a function defined in (0, 2π] and elsewhere by 2π-periodicity, we shall consider SCP-integrable and P2-integrable functions defined similarly.