Article contents
Strict Topology on Spaces of Continuous Vector-Valued Functions
Published online by Cambridge University Press: 20 November 2018
Extract
In this paper, X denotes a completely regular Hausdorff space, Cb(X) all real-valued bounded continuous functions on X, E a Hausforff locally convex space over reals R, Cb(X, E) all bounded continuous functions from X into E, Cb(X) ⴲ E the tensor product of Cb(X) and E. For locally convex spaces E and F, E ⴲ, F denotes the tensor product with the topology of uniform convergence on sets of the form S X T where S and T are equicontinuous subsets of E′, F′ the topological duals of E, F respectively ([11], p. 96). For a locally convex space G , G ′ will denote its topological dual.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1979
References
- 6
- Cited by