Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T16:12:22.077Z Has data issue: false hasContentIssue false

Holomorphic Functions of Slow Growth on Nested Covering Spaces of Compact Manifolds

Published online by Cambridge University Press:  20 November 2018

Finnur Lárusson*
Affiliation:
Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B7 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $Y$ be an infinite covering space of a projective manifold $M$ in ${{\mathbb{P}}^{N}}$ of dimension $n\ge 2$. Let $C$ be the intersection with $M$ of at most $n-1$ generic hypersurfaces of degree $d$ in ${{\mathbb{P}}^{N}}$. The preimage $X$ of $C$ in $Y$ is a connected submanifold. Let $\phi$ be the smoothed distance from a fixed point in $Y$ in a metric pulled up from $M$. Let ${{\mathcal{O}}_{\phi }}(X)$ be the Hilbert space of holomorphic functions $f$ on $X$ such that ${{f}^{2}}{{e}^{-\phi }}$ is integrable on $X$, and define ${{\mathcal{O}}_{\phi }}(X)$ similarly. Our main result is that (under more general hypotheses than described here) the restriction ${{\mathcal{O}}_{\phi }}(Y)\to {{\mathcal{O}}_{\phi }}(X)$ is an isomorphism for $d$ large enough.

This yields new examples of Riemann surfaces and domains of holomorphy in ${{\mathbb{C}}^{n}}$ with corona. We consider the important special case when $Y$ is the unit ball $\mathbb{B}$ in ${{\mathbb{C}}^{n}}$, and show that for $d$ large enough, every bounded holomorphic function on $X$ extends to a unique function in the intersection of all the nontrivial weighted Bergman spaces on $\mathbb{B}$. Finally, assuming that the covering group is arithmetic, we establish three dichotomies concerning the extension of bounded holomorphic and harmonic functions from $X$ to $\mathbb{B}$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2000

References

[Anc] Ancona, A., Théorie du potentiel sur les graphes et les variétés. In: École d’éte de probabilités de Saint-Flour XVIII , 1988, Lecture Notes in Math. 1427, Springer-Verlag, Berlin, 1990, 1112.Google Scholar
[BES] Bagemihl, F., Erdös, P. and Seidel, W., Sur quelques propriétés frontières des fonctions holomorphes définies par certains produits dans le cercle-unité. Ann. Sci. École Norm. Sup. (3) 70(1953), 135147.Google Scholar
[BD] Barrett, D. E. and Diller, J., A new construction of Riemann surfaces with corona. J. Geom. Anal. 8(1998), 341347.Google Scholar
[BT] Bedford, E. and Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37(1976), 144.Google Scholar
[BO] Berndtsson, B. and Ortega Cerdà, J., On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math. 464(1995), 109–12.Google Scholar
[Bre] Bremermann, H. J., On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries. Trans. Amer.Math. Soc. 91(1959), 246276.Google Scholar
[Dem] Demailly, J.-P., Théorie de Hodge L2 et théorèmes d’annulation. In: Introduction à la théorie de Hodge, Panoramas et synthèses 3, Soc. Math. France, 1996.Google Scholar
[EP] Eschmeier, J. and Putinar, M., Spectral decompositions and analytic sheaves. LondonMath. Society Monographs, new series 10, Oxford University Press, 1996.Google Scholar
[Gam] Gamelin, T. W., Uniform algebras and Jensen measures. London Math. Society Lecture Note Series 32, Cambridge University Press, 1978.Google Scholar
[Has] Hasumi, M., Hardy classes on infinitely connected Riemann surfaces. Lecture Notes in Math. 1027, Springer-Verlag, 1983.Google Scholar
[Hay] Hayashi, M., The maximal ideal space of the bounded analytic functions on a Riemann surface. J. Math. Soc. Japan 39(1987), 337344.Google Scholar
[HL] Henkin, G. and Leiterer, J., Theory of functions on complex manifolds. Monographs in Math. 79, Birkhäuser, 1984.Google Scholar
[Hör] Hörmander, L., Generators for some rings of analytic functions. Bull. Amer. Math. Soc. 73(1967), 943949.Google Scholar
[Kol] Kollár, J., Shafarevich maps and automorphic forms. Princeton University Press, 1995.Google Scholar
[Kra] Krantz, S. G., Function theory of several complex variables. 2nd ed., Wadsworth & Brooks/Cole, 1992.Google Scholar
[Lár1] Lárusson, F., An extension theorem for holomorphic functions of slow growth on covering spaces of projective manifolds. J. Geom. Anal. 5(1995), 281291.Google Scholar
[Lár2] Lárusson, F., The Martin boundary action of Gromov hyperbolic covering groups and applications to Hardy classes. International J. Math. 6(1995), 601624.Google Scholar
[Mac] Mac Lane, G. R., Meromorphic functions with small characteristic and no asymptotic values. Michigan Math. J. 8(1961), 177185.Google Scholar
[Nak] Nakai, M., Corona problem for Riemann surfaces of Parreau-Widom type. Pacific J. Math. 103(1982), 103109.Google Scholar
[Nap] Napier, T., Convexity properties of coverings of smooth projective varieties. Math. Ann. 286(1990), 433479.Google Scholar
[NR] Napier, T. and Ramachandran, M., Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems. Geom. Funct. Anal. 5(1995), 809851.Google Scholar
[Rud] Rudin, W., Function theory in the unit ball of Cn. Grundlehren der math. Wissenschaften 241, Springer-Verlag, 1980.Google Scholar
[Sei] Seip, K., Beurling type density theorems in the unit disk. Invent.Math. 113(1993), 2139.Google Scholar
[Sib] Sibony, N., Prolongement des fonctions holomorphes bornées et métrique de Carathéodory. Invent. Math. 29(1975), 205230.Google Scholar
[Sie] Siegel, C. L., Analytic functions of several complex variables. Notes by P. T. Bateman fromlectures delivered at the Institute for Advanced Study in 1948–9, Princeton, 1950.Google Scholar
[Siu] Siu, Y.-T., Every Stein subvariety admits a Stein neighborhood. Invent.Math. 38(1976/77), 89100.Google Scholar
[Sto] Stoll, M., Invariant potential theory in the unit ball of Cn. London Math. Soc. Lecture Note Series 199, Cambridge University Press, 1994.Google Scholar
[Wal] Walsh, J. B., Continuity of envelopes of plurisubharmonic functions. J. Math.Mech. 18(1968), 143148.Google Scholar
[Zim] Zimmer, R. J., Ergodic theory and semisimple groups. Monographs in Math. 81, Birkhäuser, 1984.Google Scholar