No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let ${{G}_{n}}$ be the split classical groups $\text{Sp}(\text{2}n\text{),}\,\text{SO(2}n\text{+1})$ and $\text{SO(2}n\text{)}$ defined over a $p$-adic field F or the quasi-split classical groups $U(n,n)$ and $U(n+1,n)$ with respect to a quadratic extension $E/F$. We prove the self-duality of unitary supercuspidal data of standard Levi subgroups of ${{G}_{n}}(F)$ which give discrete series representations of ${{G}_{n}}(F)$.