We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present an example of an isometric subspace of a metric space that has a greater metric dimension. We also show that the metric spaces of vector groups over the integers, defined by the generating set of unit vectors, cannot be resolved by a finite set. Bisectors in the spaces of vector groups, defined by the generating set consisting of unit vectors, are completely determined.
Let $n$ be a positive integer and $a$ an integer prime to $n$. Multiplication by $a$ induces a permutation over $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots ,\overline{n-1}\}$. Lerch’s theorem gives the sign of this permutation. We explore some applications of Lerch’s result to permutation problems involving quadratic residues modulo $p$ and confirm some conjectures posed by Sun [‘Quadratic residues and related permutations and identities’, Preprint, 2018, arXiv:1809.07766]. We also study permutations involving arbitrary $k$th power residues modulo $p$ and primitive roots modulo a power of $p$.
We prove the Hausdorff measure version of the matrix form of Gallagher’s theorem in the inhomogeneous setting, thereby proving a conjecture posed by Hussain and Simmons [‘The Hausdorff measure version of Gallagher’s theorem—closing the gap and beyond’, J. Number Theory186 (2018), 211–225].
We prove that for every $m\geq 0$ there exists an $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D700}(m)>0$ such that if $0<\unicode[STIX]{x1D706}<\unicode[STIX]{x1D700}$ and $x$ is sufficiently large in terms of $m$ and $\unicode[STIX]{x1D706}$, then
The value of $\unicode[STIX]{x1D700}(m)$ and the dependence of the implicit constant on $\unicode[STIX]{x1D706}$ and $m$ may be made explicit. This is an improvement of the author’s previous result. Moreover, we will show that a careful investigation of the proof, apart from some slight changes, can lead to analogous estimates when allowing the parameters $m$ and $\unicode[STIX]{x1D706}$ to vary as functions of $x$ or replacing the set $\mathbb{P}$ of all primes by primes belonging to certain specific subsets.
Let $p$ be a prime. If an integer $g$ generates a subgroup of index $t$ in $(\mathbb{Z}/p\mathbb{Z})^{\ast },$ then we say that $g$ is a $t$-near primitive root modulo $p$. We point out the easy result that each coprime residue class contains a subset of primes $p$ of positive natural density which do not have $g$ as a $t$-near primitive root and we prove a more difficult variant.
We study the singularity at the origin of $\mathbb{C}^{n+1}$ of an arbitrary homogeneous polynomial in $n+1$ variables with complex coefficients, by investigating the monodromy characteristic polynomials $\unicode[STIX]{x1D6E5}_{l}(t)$ as well as the relation between the monodromy zeta function and the Hodge spectrum of the singularity. In the case $n=2$, we give a description of $\unicode[STIX]{x1D6E5}_{C}(t)=\unicode[STIX]{x1D6E5}_{1}(t)$ in terms of the multiplier ideal.
Let $F$ be an algebraically closed field of characteristic $0$ and let $\operatorname{sp}(2l,F)$ be the rank $l$ symplectic algebra of all $2l\times 2l$ matrices $x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$ over $F$, where $A^{t}$ is the transpose of $A$ and $B,C$ are symmetric matrices of order $l$. The commuting graph $\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$ of $\operatorname{sp}(2l,F)$ is a graph whose vertex set consists of all nonzero elements in $\operatorname{sp}(2l,F)$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=yx$. We prove that the diameter of $\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$ is $4$ when $l>2$.
Let $G$ be a finite group and let $\text{Irr}(G)$ be the set of all irreducible complex characters of $G$. Let $\unicode[STIX]{x1D70C}(G)$ be the set of all prime divisors of character degrees of $G$. The character degree graph $\unicode[STIX]{x1D6E5}(G)$ associated to $G$ is a graph whose vertex set is $\unicode[STIX]{x1D70C}(G)$, and there is an edge between two distinct primes $p$ and $q$ if and only if $pq$ divides $\unicode[STIX]{x1D712}(1)$ for some $\unicode[STIX]{x1D712}\in \text{Irr}(G)$. We prove that $\unicode[STIX]{x1D6E5}(G)$ is $k$-regular for some natural number $k$ if and only if $\overline{\unicode[STIX]{x1D6E5}}(G)$ is a regular bipartite graph.
Let $G$ be a group, $p$ be a prime and $P\in \text{Syl}_{p}(G)$. We say that a $p$-Brauer character $\unicode[STIX]{x1D711}$ is monolithic if $G/\ker \unicode[STIX]{x1D711}$ is a monolith. We prove that $P$ is normal in $G$ if and only if $p\nmid \unicode[STIX]{x1D711}(1)$ for each monolithic Brauer character $\unicode[STIX]{x1D711}\in \text{IBr}(G)$. When $G$ is $p$-solvable, we also prove that $P$ is normal in $G$ and $G/P$ is nilpotent if and only if $\unicode[STIX]{x1D711}(1)^{2}$ divides $|G:\ker \unicode[STIX]{x1D711}|$ for all monolithic irreducible $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
In this paper, we study the probability distribution of the word map $w(x_{1},x_{2},\ldots ,x_{k})=x_{1}^{n_{1}}x_{2}^{n_{2}}\cdots x_{k}^{n_{k}}$ in a compact Lie group. We show that the probability distribution can be represented as an infinite series. Moreover, in the case of the Lie group $\text{SU}(2)$, our computations give a nice convergent series for the probability distribution.
For $G$ a finite non-Abelian group we write $c(G)$ for the probability that two randomly chosen elements commute and $k(G)$ for the largest integer such that any $k(G)$-colouring of $G$ is guaranteed to contain a monochromatic quadruple $(x,y,xy,yx)$ with $xy\neq yx$. We show that $c(G)\rightarrow 0$ if and only if $k(G)\rightarrow \infty$.
The Banach–Mazur separable quotient problem asks whether every infinite-dimensional Banach space $B$ has a quotient space that is an infinite-dimensional separable Banach space. The question has remained open for over 80 years, although an affirmative answer is known in special cases such as when $B$ is reflexive or even a dual of a Banach space. Very recently, it has been shown to be true for dual-like spaces. An analogous problem for topological groups is: Does every infinite-dimensional (in the topological sense) connected (Hausdorff) topological group $G$ have a quotient topological group that is infinite dimensional and metrisable? While this is known to be true if $G$ is the underlying topological group of an infinite-dimensional Banach space, it is shown here to be false even if $G$ is the underlying topological group of an infinite-dimensional locally convex space. Indeed, it is shown that the free topological vector space on any countably infinite $k_{\unicode[STIX]{x1D714}}$-space is an infinite-dimensional toplogical vector space which does not have any quotient topological group that is infinite dimensional and metrisable. By contrast, the Graev free abelian topological group and the Graev free topological group on any infinite connected Tychonoff space, both of which are connected topological groups, are shown here to have the tubby torus $\mathbb{T}^{\unicode[STIX]{x1D714}}$, which is an infinite-dimensional metrisable group, as a quotient group.
Assume a point $z$ lies in the open unit disk $\mathbb{D}$ of the complex plane $\mathbb{C}$ and $f$ is an analytic self-map of $\mathbb{D}$ fixing 0. Then Schwarz’s lemma gives $|f(z)|\leq |z|$, and Dieudonné’s lemma asserts that $|f^{\prime }(z)|\leq \min \{1,(1+|z|^{2})/(4|z|(1-|z|^{2}))\}$. We prove a sharp upper bound for $|f^{\prime \prime }(z)|$ depending only on $|z|$.
We show that an essentially amenable Banach algebra need not have an approximate identity. This answers a question posed by Ghahramani and Loy [‘Generalized notions of amenability’, J. Funct. Anal.208 (2004), 229–260]. Essentially Connes-amenable dual Banach algebras are introduced and studied.
In this paper we provide some bounds for the quantity $\Vert f(y)-f(x)\Vert$, where $f:D\rightarrow \mathbb{C}$ is an analytic function on the domain $D\subset \mathbb{C}$ and $x$, $y\in {\mathcal{B}}$, a Banach algebra, with the spectra $\unicode[STIX]{x1D70E}(x)$, $\unicode[STIX]{x1D70E}(y)\subset D$. Applications for the exponential and logarithmic functions on the Banach algebra ${\mathcal{B}}$ are also given.
Let ${\mathcal{D}}$ be a Schauder decomposition on some Banach space $X$. We prove that if ${\mathcal{D}}$ is not $R$-Schauder, then there exists a Ritt operator $T\in B(X)$ which is a multiplier with respect to ${\mathcal{D}}$ such that the set $\{T^{n}:n\geq 0\}$ is not $R$-bounded. Likewise, we prove that there exists a bounded sectorial operator $A$ of type $0$ on $X$ which is a multiplier with respect to ${\mathcal{D}}$ such that the set $\{e^{-tA}:t\geq 0\}$ is not $R$-bounded.
The Lusternik–Schnirelmann category cat and topological complexity TC are related homotopy invariants. The topological complexity TC has applications to the robot motion planning problem. We calculate the Lusternik–Schnirelmann category and topological complexity of the ordered configuration space of two distinct points in the product $G\times \mathbb{R}^{n}$ and apply the results to the planar and spatial motion of two rigid bodies in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$ respectively.