Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T19:12:16.544Z Has data issue: false hasContentIssue false

Namioka spaces and topological games

Published online by Cambridge University Press:  17 April 2009

V. V. Mykhaylyuk
Affiliation:
Chernivtsi National University, Department of Mathematical Analysis, Kotsjubyns'koho 2, Chernivtsi 58012, Ukraine e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a class of β − v-unfavourable spaces, which contains some known classes of β-unfavourable spaces for topological games of Choquet type. It is proved that every β − v-unfavourable space X is a Namioka space, that is for any compact space Y and any separately continuous function f : x × Y → ℝ there exists a dense in XGδ-set AX such that f is jointly continuous at each point of A × Y.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Arhangel'skii, A.V., Topological function spaces (Kluwer Acadademic Publishers, Dordrecht, 1992).CrossRefGoogle Scholar
[2]Baire, R., ‘Sur les fonctions de variable reelles’, Ann. Mat. Pura Appl. 3 (1899), 1123.CrossRefGoogle Scholar
[3]Bouziad, A., ‘Notes sur la propriete de Namioka’, Trans. Amer. Math. Soc. 344 (1994), 873883.Google Scholar
[4]Christesen, J.P.R., ‘Joint continuity of separately continuous functions’, Proc. Amer. Math. Soc. 82 (1981), 455461.CrossRefGoogle Scholar
[5]Debs, G., ‘Points de continuite d'une function separement continue’, Proc. Amer. Math. Soc. 97 (1986), 167176.Google Scholar
[6]Maslyuchenko, O.V., Oscillation of separately continuous functions and topological games, (Ph.D. Thesis, in Ukrainian) (Chernivtsi National University, 2002).Google Scholar
[7]Namioka, I., ‘Separate continuity and joint continuity’, Pacif. J. Math. 51 (1974), 515531.CrossRefGoogle Scholar
[8]Rybakov, V.I., ‘Some class of Namioka spaces’, Mat. zametki 73 (2003), 263268.Google Scholar
[9]Saint-Raymond, J., ‘Jeux topologiques et espaces de Namioka’, Proc. Amer. Math. Soc. 87 (1983), 489504.CrossRefGoogle Scholar
[10]Talagrand, M., ‘Espaces de Banach faiblement k-analytiques’, Ann. of Math. 110 (1979), 407438.CrossRefGoogle Scholar
[11]Talagrand, M., ‘Espaces de Baire et espaces de Namioka’, Ann. of. Math. 270 (1985), 159164.CrossRefGoogle Scholar