The developmental and reproductive biology of a new avocado pest, Scirtothrips perseae Nakahara, was determined in the laboratory at five constant temperatures, 15, 20, 25, 27.5 and 30°C. At 20°C, S. perseae exhibited greatest larval to adult survivorship (41%), and mated females produced a greater proportion of female offspring at this temperature when compared to 15, 25, 27.5 and 30°C. Average lifetime fecundity and preoviposition period was greatest at 15°C at 39.6 eggs per female and 17.6 days, respectively. Jackknifed estimates of net reproduction (Ro), capacity for increase (rc), intrinsic rate of increase (rm), and finite rate of increase (λ) were all significantly greater at 20°C than corresponding values at 15, 25 and 27.5°C. Population doubling time (Td) was significantly lower at 20°C, indicating S. perseae populations can double 33–71% faster at this temperature in comparison to 15, 25 and 27.5°C. Mean adult longevity decreased with increasing temperature, from a maximum of 52.4 days at 15°C to a minimum of 2.4 days at 30°C. Developmental rates increased linearly with increasing temperatures for eggs and rates were non-linear for development of first and second instar larvae, propupae, pupae, and for egg to adult development. Linear regression and fitting of the modified Logan model to developmental rate data for egg to adult development estimated that 344.8 day degrees were required above a minimum threshold of 6.9°C to complete development. An upper developmental threshold was estimated at 37.6°C with an optimal temperature of 30.5°C for egg to adult development. Unmated females produced only male offspring confirming arrhenotoky in S. perseae.