The high yielding dairy cow is expected to produce a substantial milk output every year and at the same time to conceive and maintain a pregnancy to term. To fulfil lifetime production potential a balance between yield, fertility and other influential factors has to be achieved. Any inability on the part of the management system to identify and rectify problems or on the part of the cow to cope with metabolic demands invariably results in economic or welfare issues. Our studies of high yielding dairy cows have revealed that some animals are capable of normal reproductive function whilst others are classic repeat breeders (requiring 3+ services per conception) or simply fail to rebreed. It is well established that the somatotrophic axis (growth hormone and insulin-like growth factors) drives lactation in ruminants but it is also intimately involved in reproductive processes. An awareness of metabolic adaptations to lactation that impact on reproduction in dairy cows is needed for appropriate management.
The objective of our studies was to explore the metabolic profiles of high yielding dairy cows to identify factors influencing their ovarian function and fertility, hence to characterise the physiological adaptations involved. Our studies revealed different relationships between progesterone profile categories and metabolic status post partum. Delayed ovulation (DOV) or persistent corpora lutea (PCL) may be an appropriate response to a nutritional state or physiological situation and it may therefore be inaccurate to refer to these as ‘abnormal’. Whilst associated with high milk yields, not all profile categories detrimentally affected fertility parameters. Delayed ovulation postcalving (DOV1) was identified as the most prevalent abnormal profile encountered in first lactation high yielding cows. This may have occurred because the cows were not yet physically mature and unable to sustain both milk production and growth. The condition lasted long enough (71 ± 8.3 days from calving) to have a detrimental impact on their overall fertility parameters and was associated with significant physiological changes, representative of tissue mobilisation. Although the incidence of persistent luteal phases (PCL1 and PCL2) in dairy cows is increasing, this condition was not found to have any substantial detrimental effects on fertility or production parameters of the primiparous or multiparous cows in these studies. The main reproductive problems in our high yielding primiparous and multiparous cows appeared to be a failure to ovulate and conceive at the expected time or to maintain a pregnancy. These situations were associated predominantly with high milk yields and low concentrations of plasma IGF-I. A failure to ovulate appears to occur when body reserves are mobilised to maintain milk yield at the expense of reproduction and seems most likely to occur in primiparous high yielding cows or those experiencing GH-resistance (low IGF-I) due to excessive body condition loss, reduced feed intakes and factors such as stress and disease. More detailed investigations of dietary means of increasing IGF-I and optimising insulin concentrations, targeted at important reproductive times, are required in high yielding dairy cows, to aid in their management.