No CrossRef data available.
Article contents
“Switching” between fast and slow processes is just reward-based branching
Published online by Cambridge University Press: 18 July 2023
Abstract
Shortcuts to goals are rewarded by faster attainment and punished by more frequent failure, so selection of the various kinds – heuristics, cached sequences (habits or macros), gut instincts – depends on reward history just like other kinds of choice. The speeds of shortcuts lie on continua along with speeds of deliberation, and these continua have no obvious separation points.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press
References
Ainslie, G. (2009). Pleasure and aversion: Challenging the conventional dichotomy. Inquiry: A Journal of Medical Care Organization, Provision and Financing, 52(4), 357–377. http://dx.doi.org/10.1080/00201740903087342CrossRefGoogle Scholar
Ainslie, G. (2017). De gustibus disputare: Hyperbolic delay discounting integrates five approaches to choice. Journal of Economic Methodology 24(2), 166–189. http://dx.doi.org/10.1080/1350178X.2017.1309748CrossRefGoogle Scholar
Ainslie, G. (2021). Reply to commentaries to “willpower with and without effort.” Behavioral and Brain Sciences 44, E57. https://doi.org/10.1017/s0140525x21000029Google Scholar
Aquino, T. G., Minxha, J., Dunne, S., Ross, I. B., Mamelak, A. N., Rutishauser, U., & O'Doherty, J. P. (2020). Value-related neuronal responses in the human amygdala during observational learning. Journal of Neuroscience, 40(24), 4761–4772.10.1523/JNEUROSCI.2897-19.2020CrossRefGoogle ScholarPubMed
Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.10.1016/j.neuroimage.2013.02.063CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience. Brain Research Reviews, 28, 309–369.10.1016/S0165-0173(98)00019-8CrossRefGoogle ScholarPubMed
De Neys, W. (2021). On dual- and single-process models of thinking. Perspectives on Psychological Science, 16(6), 1412–1427.10.1177/1745691620964172CrossRefGoogle ScholarPubMed
Dohmatob, E., Dumas, G., & Bzdok, D. (2020). Dark control: The default mode network as a reinforcement learning agent. Human Brain Mapping, 41(12), 3318–3341.10.1002/hbm.25019CrossRefGoogle ScholarPubMed
Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2), 312–325.10.1016/j.neuron.2013.09.007CrossRefGoogle ScholarPubMed
Gauthier, J. L., & Tank, D. W. (2018). A dedicated population for reward coding in the hippocampus. Neuron, 99(1), 179–193.10.1016/j.neuron.2018.06.008CrossRefGoogle ScholarPubMed
Kable, J. W., & Glimcher, P. W. (2007) The neural correlates of subjective value during intertemporal choice. Nature Neuroscience 10, 1625–1633.10.1038/nn2007CrossRefGoogle ScholarPubMed
Keramati, M., Smittenaar, P., Dolan, R. J., & Dayan, P. (2016). Adaptive integration of habits into depth-limited planning defines a habitual-goal-directed spectrum. Proceedings of the National Academy of Sciences, 113(45), 12868–12873.10.1073/pnas.1609094113CrossRefGoogle ScholarPubMed
Kim, H., Nanavaty, N., Ahmed, H., Mathur, V. A., & Anderson, B. A. (2021). Motivational salience guides attention to valuable and threatening stimuli: Evidence from behavior and functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 33(12), 2440–2460.10.1162/jocn_a_01769CrossRefGoogle ScholarPubMed
Krönke, K. M., Wolff, M., Shi, Y., Kräplin, A., Smolka, M. N., Bühringer, G., & Goschke, T. (2020). Functional connectivity in a triple-network saliency model is associated with real-life self-control. Neuropsychologia, 149, 107667.10.1016/j.neuropsychologia.2020.107667CrossRefGoogle Scholar
Lempert, K. M., Steinglass, J. E., Pinto, A., Kable, J. W., & Simpson, H. B. (2019). Can delay discounting deliver on the promise of RDoC?. Psychological Medicine, 49(2), 190–199.10.1017/S0033291718001770CrossRefGoogle ScholarPubMed
Levy, D. J., & Glimcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038.10.1016/j.conb.2012.06.001CrossRefGoogle ScholarPubMed
McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). The grasshopper and the ant: Separate neural systems value immediate and delayed monetary rewards. Science (New York, N.Y.) 306, 503–507.10.1126/science.1100907CrossRefGoogle Scholar
Sambrook, T. D., Hardwick, B., Wills, A. J., & Goslin, J. (2018). Model-free and model-based reward prediction errors in EEG. NeuroImage, 178, 162–171.10.1016/j.neuroimage.2018.05.023CrossRefGoogle ScholarPubMed
van den Bos, W., & McClure, S. M. (2013). Towards a general model of temporal discounting. Journal of the Experimental Analysis of Behavior, 99(1), 58–73.10.1002/jeab.6CrossRefGoogle ScholarPubMed
Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115(2), 118.10.1037/0096-3445.115.2.118CrossRefGoogle ScholarPubMed
Target article
Advancing theorizing about fast-and-slow thinking
Related commentaries (34)
A good architecture for fast and slow thinking, but exclusivity is exclusively in the past
A tale of two histories: Dual-system architectures in modular perspective
A view from mindreading on fast-and-slow thinking
Advancing theorizing about fast-and-slow thinking: The interplay between fast and slow processing
Automatic threat processing shows evidence of exclusivity
Categorizing judgments as likely to be selected by intuition or deliberation
Conflict paradigms cannot reveal competence
Correction, uncertainty, and anchoring effects
Could Bayesian cognitive science undermine dual-process theories of reasoning?
Deliberation is (probably) triggered and sustained by multiple mechanisms
Deliberative control is more than just reactive: Insights from sequential sampling models
Dual-process moral judgment beyond fast and slow
Dual-process theory is Barbapapa
Explaining normative–deliberative gaps is essential to dual-process theorizing
Fast and slow language processing: A window into dual-process models of cognition
Hoist by its own petard: The ironic and fatal flaws of dual-process theory
How research on persuasion can inform dual-process models of judgment
Illusory intuitions: Challenging the claim of non-exclusivity
Individual differences and multi-step thinking
Learning how to reason and deciding when to decide
More than two intuitions
Not feeling right about uncertainty monitoring
Switching between system 1 and system 2: The nature of competing intuitions and the role of disfluency
Switching: Cultural fluency sustains and cultural disfluency disrupts thinking fast
The distinction between long-term knowledge and short-term control processes is valid and useful
The dual-system approach is a useful heuristic but does not accurately describe behavior
Toward dual-process theory 3.0
Unifying theories of reasoning and decision making
Using the study of reasoning to address the age of unreason
We know what stops you from thinking forever: A metacognitive perspective
What is intuiting and deliberating? A functional–cognitive perspective
When a thinker does not want to think: Adding meta-control into the working model
Why is system 1/system 2 switching affectively loaded?
“Switching” between fast and slow processes is just reward-based branching
Author response
Further advancing fast-and-slow theorizing