No CrossRef data available.
Article contents
Could Bayesian cognitive science undermine dual-process theories of reasoning?
Published online by Cambridge University Press: 18 July 2023
Abstract
Computational-level models proposed in recent Bayesian cognitive science predict both the “biased” and correct responses on many tasks. So, rather than possessing two reasoning systems, people can generate both possible responses within a single system. Consequently, although an account of why people make one response rather than another is required, dual processes of reasoning may not be.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press
References
Bago, B., Raoelison, M., & De Neys, W. (2019). Second-guess: Testing the specificity of error detection in the bat-and-ball problem. Acta Psychologica, 193, 214–228. https://doi.org/10.1016/j.actpsy.2019.01.008CrossRefGoogle ScholarPubMed
Chater, N., & Oaksford, M. (Eds.) (2008). The probabilistic mind: Prospects for Bayesian cognitive science. Oxford University Press.10.1093/acprof:oso/9780199216093.001.0001CrossRefGoogle Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral & Brain Sciences, 36, 181–253.10.1017/S0140525X12000477CrossRefGoogle ScholarPubMed
Coenen, A., Nelson, J. D., & Gureckis, T. M. (2019). Asking the right questions about the psychology of human inquiry: Nine open challenges. Psychonomic Bulletin & Review, 26, 1548–1587. https://doi-org.ezproxy.lib.bbk.ac.uk/10.3758/s13423-018-1470-5CrossRefGoogle ScholarPubMed
Dasgupta, I., Schulz, E., & Gershman, S. J. (2017). Where do hypotheses come from? Cognitive Psychology, 96, 1–25.10.1016/j.cogpsych.2017.05.001CrossRefGoogle ScholarPubMed
Elqayam, S., & Over, D. E. (2013). New paradigm psychology of reasoning: An introduction to the special issue edited by Elqayam, Bonnefon, and over. Thinking & Reasoning, 19, 249–265. https://doi-org.ezproxy.lib.bbk.ac.uk/10.1080/13546783.2013.841591CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138. https://doi.org/10.1038/nrn2787CrossRefGoogle ScholarPubMed
Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: A Bayesian approach to reasoning fallacies. Psychological Review, 114, 704–732.CrossRefGoogle ScholarPubMed
Kruglanski, A. W., & Gigerenzer, G. (2011). Intuitive and deliberate judgments are based on common principles. Psychological Review, 118, 97–109. doi-org.ezproxy.lib.bbk.ac.uk/10.1037/a0020762CrossRefGoogle ScholarPubMed
Monteiro, T., Vasconcelos, M., & Kacelnik, A. (2013). Starlings uphold principles of economic rationality for delay and probability of reward. Proceedings of the Royal Society B, 280, 20122386. doi:10.1098/rspb.2012.2386CrossRefGoogle ScholarPubMed
Oaksford, M. (2022). Mental models, computational explanation, and Bayesian cognitive science: Commentary on Knauff and Gazzo Castañeda (2022). Thinking & Reasoning. doi.org/10.1080/13546783.2021.2022531Google Scholar
Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review, 101, 608–631.CrossRefGoogle Scholar
Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford University Press.10.1093/acprof:oso/9780198524496.001.0001CrossRefGoogle Scholar
Oaksford, M., & Chater, N. (2012). Dual processes, probabilities, and cognitive architecture. Mind & Society, 11, 15–26.10.1007/s11299-011-0096-3CrossRefGoogle Scholar
Oaksford, M., & Chater, N. (2020). New paradigms in the psychology of reasoning. Annual Review of Psychology, 71, 305–330.10.1146/annurev-psych-010419-051132CrossRefGoogle ScholarPubMed
Oaksford, M., & Hall, S. (2016). On the source of human irrationality. Trends in Cognitive Science, 20, 336–344.10.1016/j.tics.2016.03.002CrossRefGoogle ScholarPubMed
Rehder, B. (2017). Concepts as causal models: Categorization. In Waldmann, M. R. (Ed.), The Oxford handbook of causal reasoning (pp. 347–375). Oxford University Press.Google Scholar
Stanovich, K. E. (2013). Why humans are (sometimes) less rational than other animals: Cognitive complexity and the axioms of rational choice. Thinking & Reasoning, 19, 1–26.10.1080/13546783.2012.713178CrossRefGoogle Scholar
Tentori, K., Crupi, V., & Russo, S. (2013). On the determinants of the conjunction fallacy: Probability versus inductive confirmation. Journal of Experimental Psychology: General, 142, 235–255.CrossRefGoogle ScholarPubMed
Vance, J., & Oaksford, M. (2021). Explaining the implicit negations effect in conditional inference: Experience, probabilities, and contrast sets. Journal of Experimental Psychology: General, 150, 354–384. https://doi.org/10.1037/xge0000954CrossRefGoogle ScholarPubMed
Zhu, J.-Q., Sanborn, A. N., & Chater, N. (2020). The Bayesian sampler: Generic Bayesian inference causes incoherence in human probability judgments. Psychological Review, 127, 719–748. https://doi.org/10.1037/rev0000190CrossRefGoogle ScholarPubMed
Target article
Advancing theorizing about fast-and-slow thinking
Related commentaries (34)
A good architecture for fast and slow thinking, but exclusivity is exclusively in the past
A tale of two histories: Dual-system architectures in modular perspective
A view from mindreading on fast-and-slow thinking
Advancing theorizing about fast-and-slow thinking: The interplay between fast and slow processing
Automatic threat processing shows evidence of exclusivity
Categorizing judgments as likely to be selected by intuition or deliberation
Conflict paradigms cannot reveal competence
Correction, uncertainty, and anchoring effects
Could Bayesian cognitive science undermine dual-process theories of reasoning?
Deliberation is (probably) triggered and sustained by multiple mechanisms
Deliberative control is more than just reactive: Insights from sequential sampling models
Dual-process moral judgment beyond fast and slow
Dual-process theory is Barbapapa
Explaining normative–deliberative gaps is essential to dual-process theorizing
Fast and slow language processing: A window into dual-process models of cognition
Hoist by its own petard: The ironic and fatal flaws of dual-process theory
How research on persuasion can inform dual-process models of judgment
Illusory intuitions: Challenging the claim of non-exclusivity
Individual differences and multi-step thinking
Learning how to reason and deciding when to decide
More than two intuitions
Not feeling right about uncertainty monitoring
Switching between system 1 and system 2: The nature of competing intuitions and the role of disfluency
Switching: Cultural fluency sustains and cultural disfluency disrupts thinking fast
The distinction between long-term knowledge and short-term control processes is valid and useful
The dual-system approach is a useful heuristic but does not accurately describe behavior
Toward dual-process theory 3.0
Unifying theories of reasoning and decision making
Using the study of reasoning to address the age of unreason
We know what stops you from thinking forever: A metacognitive perspective
What is intuiting and deliberating? A functional–cognitive perspective
When a thinker does not want to think: Adding meta-control into the working model
Why is system 1/system 2 switching affectively loaded?
“Switching” between fast and slow processes is just reward-based branching
Author response
Further advancing fast-and-slow theorizing