No CrossRef data available.
Article contents
Global matching and fluency attribution in familiarity assessment
Published online by Cambridge University Press: 03 January 2020
Abstract
In the integrative memory model proposed by Bastin et al., familiarity is thought to arise from attribution of fluency signals. We suggest that, from a computational and anatomical perspective, this conceptualization converges with a global-matching account of familiarity assessment. We also argue that consideration of global matching and evidence accumulation in decision making could help further our understanding of the proposed attribution system.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2020
References
Barron, H. C., Garvert, M. M. & Behrens, T. E. J. (2016) Repetition suppression: A means to index neural representations using BOLD? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 371(1705). Available at: https://doi.org/10.1098/rstb.2015.0355.CrossRefGoogle ScholarPubMed
Brown, M. W. & Aggleton, J. P. (2001) Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews. Neuroscience 2(1):51–61. Available at: https://doi.org/10.1038/35049064.CrossRefGoogle ScholarPubMed
Bussey, T. J. & Saksida, L. M. (2007) Memory, perception, and the ventral visual-perirhinal-hippocampal stream: Thinking outside of the boxes. Hippocampus 17(9):898–908. Available at: https://doi.org/10.1002/hipo.20320.CrossRefGoogle ScholarPubMed
Dew, I. T. Z. & Cabeza, R. (2013) A broader view of perirhinal function: From recognition memory to fluency-based decisions. Journal of Neuroscience 33(36):14466–74. doi: 10.1523/JNEUROSCI.1413-13.2013.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Henson, R. & Martin, A. (2006) Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences 10(1):14–23. Available at: https://doi.org/10.1016/j.tics.2005.11.006.CrossRefGoogle ScholarPubMed
Hintzman, D. L. (1984) MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments & Computers 16(2):96–101. Available at: https://doi.org/10.3758/BF03202365.CrossRefGoogle Scholar
Hutchinson, J. B., Uncapher, M. R. & Wagner, A. D. (2009) Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory (Cold Spring Harbor, N.Y. 16(6):343–56. Available at: https://doi.org/10.1101/lm.919109.CrossRefGoogle ScholarPubMed
Hutchinson, J. B., Uncapher, M. R., Weiner, K. S., Bressler, D. W., Silver, M. A., Preston, A. R. & Wagner, A. D. (2014) Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cerebral Cortex 24(1):49–66. doi: 10.1093/cercor/bhs278.CrossRefGoogle ScholarPubMed
Jacoby, L. L., Kelley, C. M. & Dywan, J. (1989) Memory attributions. In: Varieties of memory and consciousness: Essays in honour of Endel Tulving, ed. Roediger, H. L. & Craik, F. I. M., pp. 391–422. Erlbaum.Google Scholar
LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K. & Wagner, A. D. (2013) Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. Journal of Neuroscience 33(13):5466–74. doi: 10.1523/JNEUROSCI.4293-12.2013.CrossRefGoogle ScholarPubMed
Montefinese, M., Zannino, G. D. & Ambrosini, E. (2015) Semantic similarity between old and new items produces false alarms in recognition memory. Psychological Research 79(5):785–94. Available at: https://doi.org/10.1007/s00426-014-0615-z.CrossRefGoogle ScholarPubMed
Norman, K. A. (2010) How hippocampus and cortex contribute to recognition memory: Revisiting the complementary learning systems model. Hippocampus 20(11):1217–27. doi: 10.1002/hipo.20855.CrossRefGoogle ScholarPubMed
Norman, K. A. & O'Reilly, R. C. (2003) Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review 110(4):611–46. Available at: https://doi.org/10.1037/0033-295X.110.4.611.CrossRefGoogle ScholarPubMed
Ratcliff, R. (1978) A theory of memory retrieval. Psychological Review 85(2):59–108. Available at: https://doi.org/10.1037/0033-295X.85.2.59.CrossRefGoogle Scholar
Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. (2016b) Diffusion decision model: Current issues and history. Trends in Cognitive Sciences 20(4):260–81. Available at: https://doi.org/10.1016/j.tics.2016.01.007.CrossRefGoogle Scholar
Shadlen, M. N. & Newsome, W. T. (2001) Neural Basis of a Perceptual Decision in the Parietal Cortex (Area LIP) of the Rhesus Monkey. Journal of Neurophysiology 86(4):1916–36. Available at: https://doi.org/10.1152/jn.2001.86.4.1916.CrossRefGoogle ScholarPubMed
Suzuki, W. A. & Naya, Y. (2014) The perirhinal cortex. Annual Review of Neuroscience 37(1):39–53. Available at: https://doi.org/10.1146/annurev-neuro-071013-014207.CrossRefGoogle ScholarPubMed
Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. (2005) Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences 9(9):445–53. Available at: http://doi.org/10.1016/j.tics.2005.07.001.CrossRefGoogle Scholar
Target article
An integrative memory model of recollection and familiarity to understand memory deficits
Related commentaries (22)
Cognitive control constrains memory attributions
Cutting out the middleman: Separating attributional biases from memory deficits
Dual processes in memory: Evidence from memory of time-of-occurrence of events
Entities also require relational coding and binding
Episodic memory is emotionally laden memory, requiring amygdala involvement
Fluency: A trigger of familiarity for relational representations?
Global matching and fluency attribution in familiarity assessment
How do memory modules differentially contribute to familiarity and recollection?
Improving the integrative memory model by integrating the temporal dynamics of memory
Priming recognition memory test cues: No evidence for an attributional basis of recollection
Refining the bigger picture: On the integrative memory model
Representational formats in medial temporal lobe and neocortex also determine subjective memory features
The integrative memory model is detailed, but skimps on false memories and development
The other side of the coin: Semantic dementia as a lesion model for understanding recollection and familiarity
The role of anxiety in the integrative memory model
The role of reference frames in memory recollection
The subjective experience of recollection and familiarity in Alzheimer's disease
The ventral lateral parietal cortex in episodic memory: From content to attribution
There is more to memory than recollection and familiarity
Two processes are not necessary to understand memory deficits
Understanding misidentification syndromes using the integrative memory model
What face familiarity feelings say about the lateralization of specific entities within the core system
Author response
Interactions with the integrative memory model